Avoiding Kidney Injury Pediatrics

Pediatric patient population: Postoperative AKI

- Majority of pediatric research focused on acute kidney injury after cardiac surgery & liver transplant
- More pediatric research is required to examine intraoperative management of noncardiac surgical patients & impact on renal outcomes
- <u>Disclaimer</u>: Evidence provided in this presentation is based on literature from both critical care and perioperative research.

Objectives

- Discuss incidence and impact of Acute Kidney Injury & Chronic Kidney Disease in pediatric surgical patients
- Review the pathophysiology related to AKI and CKD in children
- Identify definitions & stages of kidney disease for infants and children
- Share registry definitions of kidney injury or failure review ASPIRE AKI 01 measure
- Provide an overview of the literature studying the prevention and recognition of kidney disease
- Summarize recommendations supported by the literature

For more information....

- For a more in-depth overview of kidney disease, including staging and definitions, reference
 - <u>Avoiding Kidney Injury Overview, Pathophysiology, Definitions</u>
- For other specialty specific recommendations, reference the following sections of the toolkit:
 - Avoiding Kidney Injury Obstetric Patients
 - Avoiding Kidney Injury Cardiac Surgery
 - Avoiding Kidney Injury Recommendations for Adult Surgical Patients

AKI Incidence in Pediatrics¹

- Largest epidemiologic study of AKI in children using the Kids' Inpatient Database (KID), an all payer inpatient pediatric care database
 - Included 2,644,263 admissions of neonatal (≤ 1 month old) and children (< 18 old) from over 4,000 hospitals in the United States.
- Reported an AKI incidence of 3.9 cases per 1,000 admissions. AKI identified using ICD-9 codes.
- Incidence increased with age: 6.6 events per 1000 admissions in 15-18 year olds
- Mortality was 15.3% for children admitted with AKI compared to non-AKI admissions (0.6%)

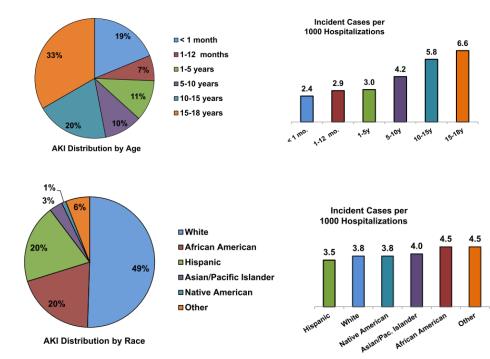
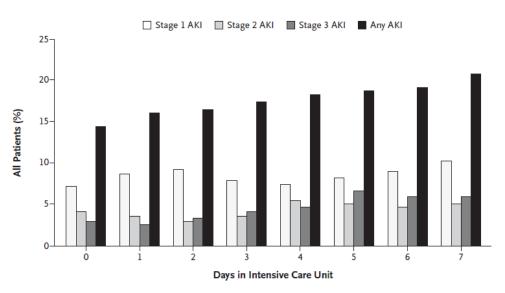


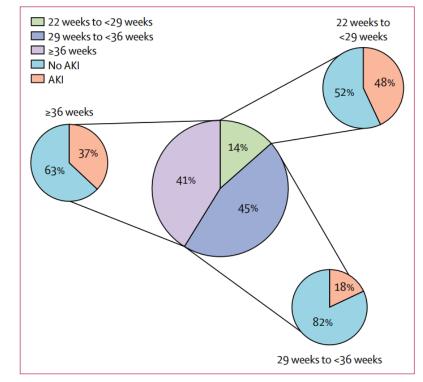
Image Source: Sutherland et al. J Am Soc Nephrol. 2013

Pediatric AKI Multi-national Study²

Assessment of Worldwide Acute Kidney Injury, Renal Angina and Epidemiology (AWARE) study

- Cohort of 4,683 critically ill children and young adults (3 months to 25 years old) admitted to pediatric intensive care unit
 - 30% were post-surgical patients
- 26.9% developed AKI; 3.4% died




Image Source: Kaddourah et al. N Engl J Med. 2017

Neonatal AKI Multi-national Study³

Assessment of Worldwide Acute Kidney Injury, Renal Angina and Epidemiology in Neonates (AWAKEN) study

- 2,022 neonates admitted to NICU
- 29.9% developed AKI rates varied by gestational age
 - 47.9% (22-29 weeks)
 - 18.3% (29-36 weeks)
 - 36.7% (> 36 weeks)
- Infants with AKI had a higher mortality compared to those without AKI (9.7% vs. 1.4%)
- Highest prevalence in white males with GA < 36 weeks

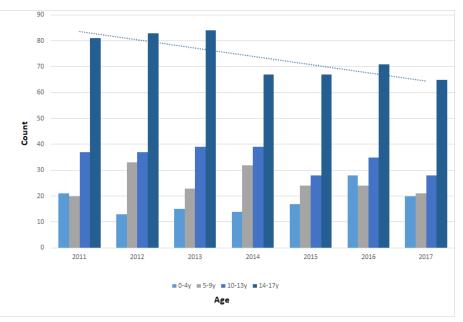
Figure 2: Gestational age distribution and AKI incidence

Image Source: Jetton et al. Lancet Child Adolesc Health. 2017

Chronic Kidney Disease (CKD) Incidence

- → ~ 10,000 children in the United States have kidney failure ⁴
- → 70% of children with CKD from diverse etiologies will progress to ESRD before reaching adulthood ⁵

→ 30-50% of children and adults with congenital heart disease have CKD ⁶


→ The ESRD incidence in African American children is twice as that in caucasian children ⁶

End Stage Renal Disease (ESRD)⁷

- Leading causes of ESRD in children
 - 0 4 year olds → Birth defects and hereditary diseases
 - 5 14y → Hereditary diseases, nephrotic syndrome and systemic diseases
 - − 15 19y \rightarrow Diseases of the glomeruli
- One-Year mortality rate for pediatric patients with ESRD has decreased by 20.4% over the last decade with the most notable improvement in those 0-4 years of age

Reported ESRD in Children/Adolescents (U.S.)

AKI Outcomes

- Mortality increases from 5% to 18% in neonates who develop AKI after non-cardiac surgery ⁸
- A prospective national cohort study of 1,343 events of AKI in patients less than 18 years old showed neonatal and pediatric 30 day mortality rates of 4.1%. and 1.2% respectively ⁹
- In a retrospective cohort study of 2,041 non-cardiac surgical patients (<18 years old) admitted to the PICU, AKI was independently associated with an increase from 5 to 7 year mortality ¹⁰
- Severe AKI is associated with an increased risk of death (11% vs. 2.5% w/o severe AKI). RRT is the second strongest predictor of death by day 28 after admission ²
- Length of ICU stay increases in children with AKI from 4 to 10 days ¹¹

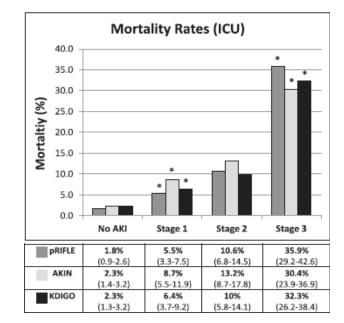


Image Source: Sutherland et al. Clin J Am Soc Nephrol, 2015

Mortality and Modality – CKD

- The probability of surviving after RRT by age is the lowest for children 0-4 years old (0.83) and young adults 18-21 years old (0.89) ¹²
 - Patients who received a kidney transplant have a higher probability of surviving 5 years when compared to those treated with hemodialysis or peritoneal dialysis
- In a study of 1,634 children and adolescents requiring RRT, the long-term survival rate was 79% at 10 years and 66% at 20 years. ¹³
- There are a limited number of studies on the risk of CKD in children who experience AKI.

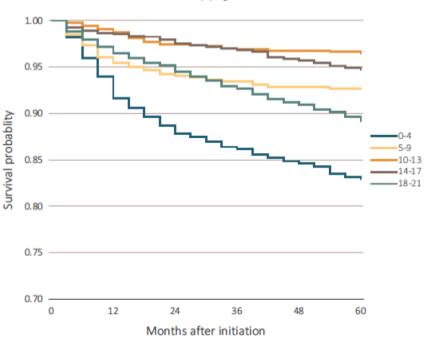
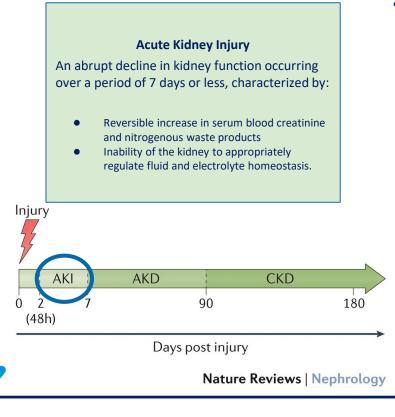


Image Source: USRDS, 2019

(a) Age

Financial Impact of Kidney Disease

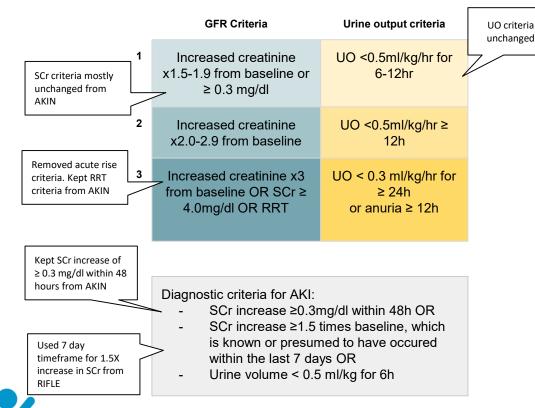
- Healthcare expenditures are 7.6x higher for children with CKD and increased by 50% over the last 10 years compared to a 25% increase in spending for children without CKD ¹⁴
- The cost of dialysis for a neonate or infant compared to an adult patient with end stage renal disease is \$75,000 to \$43,000 respectively ¹⁵



Acute Kidney Injury Classification Systems

Acute Kidney Injury: General Definition 16-17

- Several AKI Classification Systems exist:
 - **RIFLE** Risk, Injury, Failure, Loss, End Stage 2004
 - **AKIN** Acute Kidney Injury Network 2007
 - pRIFLE/nRIFLE Pediatric and neonatal specific RIFLE criteria 2008
 - KDIGO Kidney Disease Improving Global Outcomes-2012


AKI Classification Systems: RIFLE

- First attempt at a unifying definition for AKI (then called acute renal failure) ¹⁸
- Published in 2004, RIFLE graded AKI Stages and provided taxonomies for both severity and recovery ¹⁹
- Proposed 1 week timeframe for AKI Diagnosis ²⁰
- Published in 2008, modifications for pediatrics (pRIFLE) and neonates (nRIFLE) include wider duration of decreased urine output.²¹

	Serum Creatinine	Urinary Output and Duration		
	(SCr)	RIFLE	pRIFLE	nRIFLE
Risk (R)	SCr X 1.5	≤ 0.5 mL/kg/h (6 h)	< 0.5 mL/kg/h for (8 h)	< 1.5 mL/kg/h (24 h)
Injury (I)	SCr X 2.0	<u><</u> 0.5 mL/kg/h (12 h)	< 0.5 mL/kg/h for (16 h)	< 1.0 mL/kg/h (24 h)
Failure (F)	SCr X 3.0 or <u>></u> 4 or Acute rise > 0.5 mg/dL	≤ 0.3 mL/kg/h (24 h) OR Anuric (12 h)	< 0.3 mL/kg/h (24 h) OR Anuric (12 h)	< 0.7 mL/kg/h (24 h) OR Anuric (12 h)
Limitation (L)	Loss of kidney function for 4 weeks			
End stage (E)	Loss of kidney function > 3 months			

AKI Classification Systems: KDIGO Criteria²²

KDIGO has been validated as a clinically relevant AKI classification system in the pediatric population. There have been calls to utilize the KDIGO AKI definition as the standard for defining AKI in pediatrics ²³

AKI Classification Systems: KDIGO in neonates

- Serum creatinine is a suboptimal biomarker in the neonatal population due to presence of maternal creatinine, variable degree of creatinine reabsorption, low glomerular filtration rate and maturational differences. ³⁵
- Modification of KDIGO criteria for neonates (nKDIGO) stages AKI based on an absolute rise in serum creatinine from a previous trough and should be used in children < 120 days of age. ³⁶
- Severity of AKI based on neonatal KDIGO (nKDIGO) criteria was independently associated with ICU stay, renal replacement therapy and increased in-hospital mortality within 30 days after cardiac surgery.³⁷

Stage	SCr	Urine Output
0	No change in SCr or rise $<$ 0.3 mg/dL	$\geq 0.5 \text{ mL/kg/h}$
1	SCr rise \geq 0.3 mg/dL within 48 h or SCr rise	<0.5 mL/kg/h for 6 to 12 h
	\geq 1.5–1.9 \times reference SCr ^a within 7 d	
2	SCr rise ≥2.0–2.9 $×$ reference SCr ^a	$<$ 0.5 mL/kg/h for \geq 12 h
3	SCr rise \geq 3 $ imes$ reference SCr ^a or SCr \geq 2.5 mg/dL ^b or	<0.3 mL/kg/h for ≥24 h or anuria
	Receipt of dialysis	for ≥ 12 h

TABLE 1 Neonatal AKI KDIGO Classification

Differences between the proposed neonatal AKI definition and KDIGO include the following:

* Reference SCr will be defined as the lowest previous SCr value.

SCr value of 2.5 mg/dL represents <10 mL/min/1.73m².

Image Source: Selewski et al. Pediatrics. 2015

Definition and Criteria for AKI Stages	Modifications
pRIFLE	
Stage 1 (Risk): eGFR decreased by 25%	
Stage 2 (Injury): eGFR decreased by 50%	
Stage 3 (Failure): eGFR decrease by 75%	
or	
eGFR <35 ml/min per 1.73 m ²	
AKIN	
Stage 1: Increase in creatinine of $\geq 50\%$	0.3-mg/dl increase added to stage 1
or	AKI diagnosed over 48-hr period
Absolute increase in creatinine of 0.3 mg/dl	
Stage 2: Increase in creatinine of $\geq 100\%$	
Stage 3: Increase in creatinine of $\geq 200\%$	
KDIGO	CEP threads all from a DIELE added to all and
Stage 1: Increase in creatinine of $\geq 50\%$	eGFR threshold from pRIFLE added to stage
or	Creatinine changes (except absolute
	0.3-mg/dl increase) required to occur within a 7-d time frame
Absolute increase in creatinine of 0.3 mg/dl	within a 7-d time frame
Stage 2: Increase in creatinine of $\geq 100\%$	
Stage 3: Increase in creatinine of $\geq 200\%$	
or	
eGFR \leq 35 ml/min per 1.73 m ² (if age $<$ 18 yr)	

eGFK was estimated using the Schwartz method. pRIFLE, pediatric RIFLE; AKIN, Acute Kidney Injury Network; KDIGO, Kidne Diseases Improving Global Outcomes.

Image Source: Sutherland et al. Clin J Am Soc Nephrol. 2015

G9-

pRIFLE vs. AKIN vs. KDIGO ²⁴

- pRIFLE provides more sensitivity to identifying a greater number of mild AKI cases children
 - Demonstrated that doubling of SCr in children associated with 27.4% mortality rate
 - 75% of pediatric patients are admitted without a baseline SCr lab value
 - Using 120 mL/min/1.73m² in place of an actual baseline can lead to underdiagnosis of AKI using pRIFLE criteria
- AKIN does not require height or baseline creatinine values - may be advantageous as baseline SCr values are rarely available in pediatrics
- KDIGO is applicable to both pediatric and adult patients and has a less restrictive diagnostic timeframe than AKIN. Both pRIFLE and KDIGO determine stages of AKI by changes in serum creatinine (SCr)/estimated creatinine (eCCI) clearance and changes in urine output.

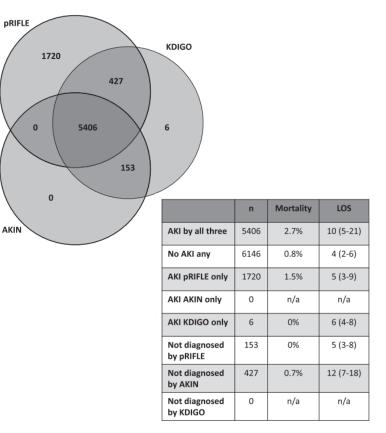


Image Source: Sutherland et al. Clin J Am Soc Nephrol. 2015

Estimated Glomerular Filtration Rate (eGFR)

- Calculating an eGFR is necessary for accurate staging of CKD in children. Renal development and function is still maturing in children less than two years old ²⁵
 - Baseline SCr is often not available in pediatric patients making it difficult to estimate baseline kidney function.
- Chronic Kidney Disease in Children (CKiD) study derived a Schwartz formula for patients 1-16 years of age ²⁶

eGFR (ml/min/1.73m²) = [height in cm x 0.413] / SCr in mg/dL

Stages of CKD in children ≥ 2 years of age

Stage	eGFR (ml/min/1.73 m2)	
1	≥90	
2	60–89	
3	30–59	
4	15–29	
5	≤15	

Image Source: Sutherland et al. J Am Soc Nephrol. 2015

AKI Pathophysiology and Etiology

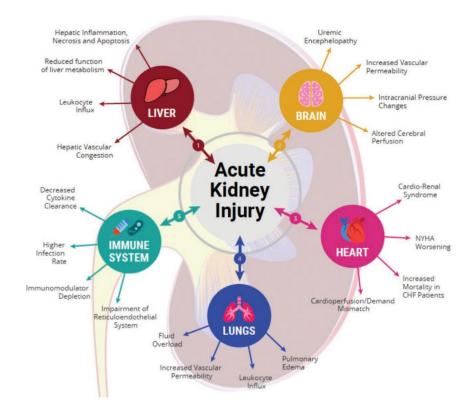


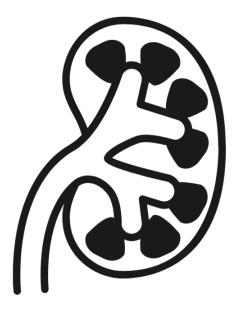
Image Source: Gumbert et al. Anesthesiology. 2020

Pathophysiology: Anesthetic Impact on AKI ²⁷⁻²⁸

- Hypovolemia and venodilation
- Positive pressure ventilation can impair venous return to the heart
- Anesthetics can reduce arterial tone which decreases perfusion pressure.
- Right sided hemodynamics are critical, as high venous pressure can cause kidney injury through organ congestion.
 - Cardiac surgery: right side of the heart may be compromised from cardioplegia.
 - Thoracic surgery: increased pleural pressure may increase venous "back pressure" on the liver and kidneys
 - Abdominal surgery: High insufflation pressure in the abdomen
- Ischemia-reperfusion causes damage associated molecular pattern (DAMP) molecules to be released into circulation such as myoglobin and uric acid.

Etiology: Pre-renal ¹⁶

capillary leak syndrome


Renal Hypoperfusion due to <u>true</u> volume contraction: Hemorrhage, dehydration, increased insensible losses (burns) and other third space losses such as sepsis, nephrotic syndrome, traumatized tissue and

Decreased <u>effective</u> intravascular **volume:** Renal perfusion decreased due to low cardiac output states, such as from congenital heart defects

Etiology: Renal (Intrinsic)

- Results of injury to kidney structures: tubules, glomeruli, the interstitium, and intra-renal blood vessels ²⁹
- Acute Tubulointerstitial nephritis
- 3 Main Causes in Children ³⁰
 - Acute Glomerulonephritis (stage 1)
 - Septicemia (stage 3)
 - Antibiotic drug-induced AKI (stage 3)

Etiology: Intrinsic Possible Causes ^{16,29}

Interstitium:

- Infectious (bacterial, viral)
- Medications (antibiotics, diuretics, NSAIDs)
- Acute Interstitial Nephritis (idiopathic or drug induced)

Vascular:

- Cortical necrosis is common in young children, particularly neonates
- Associated with ischemic insults due to perinatal anoxia, placenta abruption and twin-twin or twinmother transfusions
- Hemolytic uremic syndrome

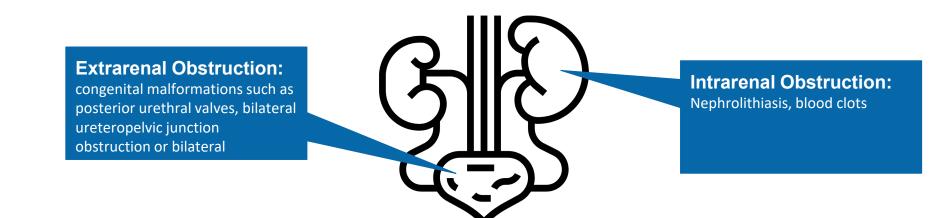
Tubular:

- Renal ischemia (shock, complication of surgery, hemorrhage, trauma, bacteremia),
- Nephrotoxic drugs
- Endogenous toxins such as uric acid excretion caused by tumor lysis syndrome in children with Leukemia

Glomerular:

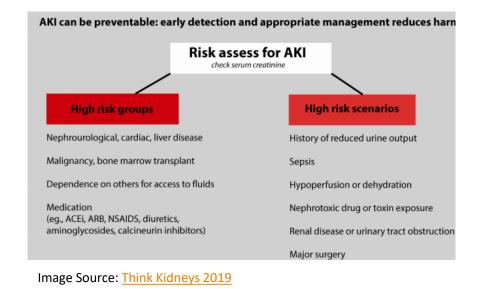
- Acute post infectious glomerulonephritis
- Lupus nephritis

Etiology: Postrenal


- Caused by blockage of urinary flow in the urinary tract ³¹
- Obstruction $\rightarrow \uparrow$ intratubular pressure and \downarrow GFR ³²
 - Leads to build up in the kidney
- Quick resolution = best chance of kidney recovery²⁹

Etiology: Post Renal Possible Causes ^{16,29}

AKI Risk Factors



Anesthesia-related Risk Factors

Potentially modifiable AKI risk factors in both pediatric cardiac and noncardiac surgery ³³⁻³⁵

- Hemodilution
- Hemoglobin level
- Intraoperative transfusion
- Hypotension
- Inadequate oxygen delivery
- Use of diuretics
- Use of vasopressors and inotropes
- Selective renal ischemia
- Ischemia reperfusion injury
- Bleeding complications
- Transfusion of allogeneic blood products
- Intraoperative Hypertension
- Nephrotoxic agents (eg abx, contrast agents)

AKI Risk Factors: Neonatal⁸

- Maternal
 - NSAID use
- Perinatal
 - Gestational age under 32 weeks
 - Congenital heart defect
- Postnatal
 - Low Apgar score (< 7)
 - Low birth weight (< 1500g)
 - Mechanical Ventilation
 - Surgical procedure longer than 120 min
 - Diagnosis of necrotizing enterocolitis
 - Resuscitation with epinephrine ¹²
 - Admission diagnosis of hyperbilirubinemia

AKI Risk Factors: Pediatric

- Nephrotoxic Drugs
 - Administration of IV vancomycin with or without IV administration piperacillin/tazobactam ³⁶⁻³⁸
 - Aminoglycosides ³⁹⁻⁴²
- Comorbidities ^{39-40, 43-45, 46}
 - Cystic fibrosis
 - Liver transplant recipients
 - Vaso-occlusive crisis
 - Diabetic ketoacidosis
 - Oncologic diagnosis
- Age and sex no consistent correlations ⁴⁷
- Other associated factors²
 - Sepsis
 - Heart failure
 - Tumor lysis syndrome

AKI Risk Factors: Cardiac Surgery

- Independent risk factors for AKI identified in children undergoing cardiac surgery ⁴⁸
 - Young age (< 1 year)
 - Risk adjustment in Congenital Heart Surgery category (RACHS-1) ≥ 4
 - Cardiopulmonary Bypass time ≥ 90 minutes
- Children with congenital heart disease have an increased risk of postoperative AKI⁴
 - 86% Incidence using KDIGO → Dependent on age, heart disease, cardiac status, CPB technique, management of anesthesia and postoperative care practices.
 - Other risk factors specific to children with congenital heart disease include previous cardiac surgery, univentricular anatomy, inotrope and captopril use or PICU admission preoperatively with or without mechanical ventilation
- Wide fluctuations in blood glucose intraoperatively increases the risk of AKI (using AKIN criteria).
 - Acute hyperglycemia insults alone does not increase the risk of AKI in this population

Registry Definitions: Kidney Disease

National Surgical Quality Improvement Program - Pediatrics

Progressive Renal Insufficiency:

- Rise in creatinine of >1 mg/dl from preoperative value, but with no requirement for dialysis within 30 days of the operation.

Acute Renal Failure:

- In a patient who did not require dialysis preoperatively, worsening of renal dysfunction postoperatively requiring hemodialysis, peritoneal dialysis, or ultrafiltration within 30 days of the operation.

Days from Operation until Acute Renal Failure Complication

STS - Congenital Heart Data Registry

The Society of Thoracic Surgeons

Renal Failure requiring Dialysis

- Oliguria with sustained urine output < 0.5 cc/kg/hr for 24 hours and/or a rise in creatinine >1.5x upper limits of normal for age (or 2x the most recent preop values if available), with need for dialysis (including peritoneal dialysis and /or hemodialysis) or hemofiltration
- Requiring dialysis before hospital discharge (even if greater than 30 days after surgery)

<u>OR</u>

• Requiring dialysis after hospital discharge but within 30 days after surgery

Source: STS Congenital Heart Surgery Database Data Specification

Children's Hospital Solutions for Patient Safety

- Nephrotoxic medication exposure is one of the most common causes of AKI in children
- Defined as a Class 4 (significant temporary harm) Serious Safety Event by the Children's Hospitals' Solutions for Patient Safety
- SPS has partnered with the NINJA program with plans to rollout to all 140 sites by 2020 ^{42,50}
 - NINJA Nephrotoxic Injury Negated by Just-in-time Action
 - Uses KDIGO Diagnostic criteria
 - Proactively screens for nephrotoxic drug (NTMx) exposure in EHR
 - High risk patients are monitored via daily SCr lab orders

Children's Hospitals' Solutions for Patient Safety Every patient. Every day.

Source: Solutions for Patient Safety

ASPIRE Measure Definition: AKI 01

Pediatric Patients ≤ 18 years old

- KDIGO Criterion used
- EGFR Calculation
 - Bedside Schwartz

EGFR = 0.413 x [(height in cm)/(serum creatinine in mg/dL)]

- Exclusion criteria: baseline creatinine <0.2mg/dL
 - Baseline serum creatinine is defined as the most recent serum creatinine resulted in the last 60 days preoperatively
- Success criteria:
 - The creatinine level does not go above 1.5x the baseline creatinine within 7 days post-op
 - The creatinine level does not increase by ≥ 0.3 mg/dL obtained within 48 hours after anesthesia end.

Acute Kidney Injury

AKI-01: Acute Kidney Injury

AKI Pediatric Recommendations

Pediatric and Neonate Recommendations

LO GD

01	Identify patients at risk of developing AKI	 Anesthesia related risk factors Pediatric risk factors (neonates & children) Risk factors specific to cardiac surgery
02	Prevention of AKI	 Avoid nephrotoxins Maintain Fluid Balance Normalize preoperative nutrition status
03	Early recognition of AKI	 Identify precipitating factors of AKI Early recognition prevents further progression Renal Angina Index
04	Treatment Considerations	 Correct electrolytes Avoid fluid overload Consider Renal Replacement Therapy

Recommendation #1: Identify patients at risk for AKI

*See slides 28-32 for pediatric risk factors

Recommendation #2: Prevention of AKI

Prevention of AKI

TABLE 2.

Acute Kidney Injury Management Guidelines: A Pediatric Modification to KDIGO Criteria

Stage 1	Stage 2	Stage 3
Stop nephrotoxins	Noninvasive diagnostic testing	Renal dose medications
Optimize hemodynamics	Daily weights and strict intakes and outputs	If oliguric, nephrology con- sultation
Serial serum creatinine mea- surements		Early renal replacement therapy
Record urine output (Foley catheter)		
Avoid glycemic extremes (<60,>250 mg/dL)		
Weigh risk-benefit of radio- contrast		

Abbreviation: KDIGO, Kidney Disease: Improving Global Outcomes.

Image Source: Basu et al. Clin J Am Soc Nephrol, 2018

Nephrotoxic Medication (NTMx) Exposure Defined ⁵¹

Nephrotoxic Medication exposure criteria

- \geq 3 NTMx meds
- ≥ 3 days on any IV aminoglycosides
- ≥ 3 days on Vancomycin

AKI Criteria for NTMX exposed patients

- At least 50% increase in SCr above baseline SCr (lowest SCr in the past 6 months), with the increased value above a threshold of 0.5 mg/dL
- An absolute increase of 0.3 mg/dL in SCr within 48 hours, regardless of the maximum value (minimum threshold value must be 0.5 mg/dL for peak creatinine)

For NTMx-AKI events in NICU:

- Screening begins on day of life 4 (after 72 hours of life)
- Baseline determined by the lowest creatinine on record
- Rationale: up until day ~4, creatinine is reflective of maternal creatinine and is unlikely to be at nadir

Nephrotoxic Medications for Monitoring

Nephrotoxic Medications for monitoring based on NINJA	Nephrotoxic Medications for monitoring based on NINJA	Medications which can trigger without another medication on day 3 of exposure	Medications which count as an exposure for 7 days
Acyclovir	Mesalamine	Amikacin	Ambisome
Amikacin	Methotrexate	Gentamicin	Cidofovir
Aspirin	Mitomycin	Tobramycin	Diatrizoate meglumine
Captopril	Nafcillin	Vancomycin	Diatrizoate sodium
Carboplatin	Naproxen		Iodixanol (Visipaque) (7days)
Celecoxib	Pamidronate disodium		Iohexol (Omnipaque) (7days)
Cisplatin	Pentamidine		lopamidol (Isovue)
Colistimethate	Piperacillin		Iopromide
Cyclosporine	Piperacillin/Tazobactam		loversol
Deferasirox	Polymixin B		loxaglate meglumine and
Enalapril	Sirolimus		Ioxilan
Enalaprilat	Sulfasalazine		
Foscarnet	Tacrolimus		
Ganciclovir	Tenofovir		
Gentamicin	Ticarcillin/Clavulanic Acid		
Ibuprofen	Topiramate		
Ifosfamide	Valacyclovir		
Indomethacin	Valganciclovir		
Ketorolac	Valsartan		
Lisinopril	Zoledronic acid		
Lithium	Zonisamide		
Losartan			

Image Source: Children's Hospitals' Solutions for Patient Safety

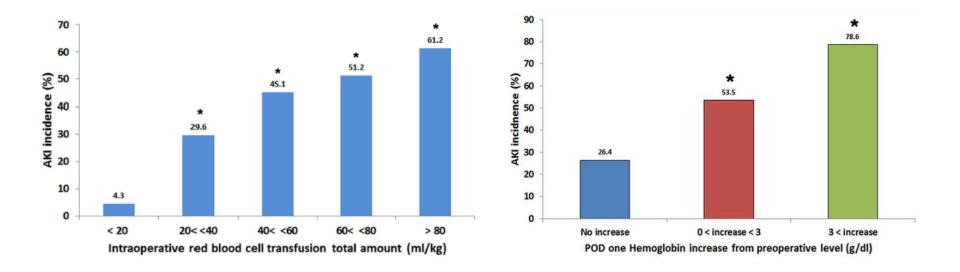
Avoid Nephrotoxic Medications

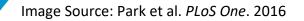
The Nephrotoxic Injury Negated by Just-in-time Action Program (NINJA) 52-53

- Proactively screens for nephrotoxic drug (NTMx) exposure in EHR and flags patients at high risk for NTMx-AKI
- High risk patients are monitored via daily SCr lab orders
- Single-center implementation reduced exposure of nephrotoxic drugs in children by 38% and AKI rate was reduced by 64%
- Multi-center preliminary data based on a 3 year implementation of NINJA is showing a 23.8% reduction in AKI rates across all nine centers.

Maintain Fluid Balance 54

Avoid over transfusion during surgery


- A single-center retrospective study (n=220) patients ages 10 days 19 years who underwent cardiac surgery in 2012
- 41.8% developed AKI (KDIGO) and 8.2% required RRT within the first week after surgery. Majority of patients were AKI stage 1 (25.9%)


Hypovolemia

- "The hypoperfusion due to decreased microvascular flow may contribute to the renal ischemic damage especially during cardiac surgery where low cardiac output and cardiogenic shock may frequently occur"
- Treatment: infuse 10-20 ml/kg of normal saline
 - If urine output does not increase, consider CVP monitoring

AKI Incidence: Correlation between transfusion volume, hemoglobin level, and AKI

Optimize Nutrition Status Preoperatively 55

In retrospective analysis of 95 neonates who had congenital heart surgery:

- 66 patients (69.5%) did not achieve preoperative caloric goal
- 29 patients (30.5%) did reach caloric goal
- Higher incidence of stage 2 or 3 AKI postoperatively for those who did not reach caloric goal as compared to those who did (P=0.04; odds ratio, 4.48; 95% confidence interval, 1.02-19.63)

Recommendation #3: Early Recognition of AKI

Early Recognition of AKI

- Identification of patients at risk facilitates early intervention with bundle implementation which has been shown to protect the kidneys and reduce mortality ⁵⁶⁻⁵⁸
- American Society of Nephrology launched AKI!NOW initiative to promote early recognition and management of AKI which helps optimize treatment and prevent progression.⁵⁹

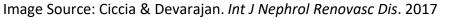
AKI!NOW Recommendations:

- Provider education at all levels in healthcare regarding AKI, particularly around identifying patients at risk
- Generate specific guidance on AKI evaluation and management
- Develop global toolkit
- Engage hospital administration and make AKI a part of quality initiative
- Raise awareness of AKI as complication of other disease processes

Emerging Research - Biomarkers

The use of NGAL and Cystatin C to detect AKI in pediatrics after cardiac surgery has been reported as feasible. ^{4,60}

- NGAL tubular biomarker
 - Most studied in pediatrics, especially cardiac surgery population
 - Can detect changes as early as 2 hours after CPB
 - Associated with AKI severity, length of mechanical ventilation, and length of ICU stay ^{11, 61-62}
 - Superior to creatinine for detection of aKI ^{11,64-66}
- Cystatin C functional biomarker
 - Protease inhibitor that is released by nucleated cells at a constant rate → filtered by the glomeruli → reabsorbed in the renal tubules. ¹⁹
 - Reflects a decrease in GFR if found in urine. ⁴
 - Superior biomarker to serum creatinine in the assessment of GFR in premature infants ⁶⁷
- Serum phosphorus alternative biomarker that can be used for early prediction of AKI in pediatric cardiac surgery as early as 24 hours postoperatively ⁶⁸

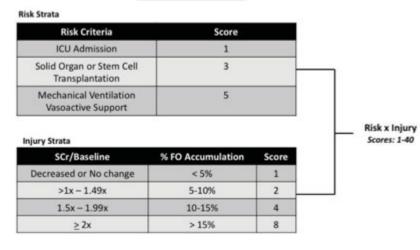


Emerging AKI Biomarker Research

Biomarker	Source	Function	Clinical utility
NGAL	Distal tubule and collecting	Regulates iron trafficking, promotes tubule cell	 Confirmed early marker of AKI severity, renal replacement need, mortality, and renal recovery
	duct	survival	 Three clinical platforms available
			 Results in 15–30 minutes
			 Pending FDA approval
KIM-I	Proximal tubule	Promotes epithelial	 Delayed marker compared with NGAL
		regeneration, regulates	 Awaits confirmatory studies
		apoptosis	 No clinical assays available
IL-18	Proximal tubule	Promotes tubule cell	Predicts AKI in post-CPB
		apoptosis and necrosis	 No clinical assays available
L-FABP	Proximal tubule	Antioxidant, suppresses	 Awaits confirmatory studies
		tubule-interstitial damage	 No clinical assays available
TIMP-2, IGFBP7	Tubule cells	Limits proliferation of	 AUC comparable to NGAL for predicting AKI post-CPB
		damaged tubule cells	 Point-of-care clinical test is FDA approved

Abbreviations: NGAL, neutrophil gelatinase-associated lipocalin; AKI, acute kidney injury; FDA, US Food and Drug Administration; KIM-I, kidney injury molecule-1; IL-18, interleukin-18; CPB, cardiopulmonary bypass; L-FABP, liver-type fatty acid-binding protein; TIMP-2, tissue inhibitor of metalloproteinases-2; IGFBP7, insulin-like growth factor-binding protein 7; AUC, area under the curve.

69



Renal Angina Index: Proactive Recognition of AKI 2,69

- Highly sensitive screening tool for AKI that combines risk factors and early signs of decreased kidney function (increased SCr or degrees of fluid overload) to stratify patients for risk of subsequent severe AKI.
- Predictive efficacy of the RAI for development of severe AKI three days after admission to the ICU was tested in a multinational, multi-center prospective study of 5,237 children
 - AKI Incidence was significantly higher in the group assessed to have renal angina (RAI score of > 8).
- Assessment of AKI according to SCr levels <u>alone</u> failed to identify AKI in 67.2% of patients with low urine output

Renal Angina Index (RAI)

Renal angina fulfilled with RAI ≥ 8

Image Source: Ciccia & Devarajan. Int J Nephrol Renovasc Dis. 2017

Recommendation #4: Treatment Considerations

Manage Acidosis & Electrolyte Imbalances ¹⁶

- Kidneys excrete net acids generated by diet & metabolism
- Acidosis is common in AKI and CKD
 - Treat with IV or oral sodium bicarbonate
- Consider serum total and ionized calcium levels before treating acidosis
 - Hypocalcemia is common in AKI & treatment of acidosis can cause tetany or seizures due to drop in ionized calcium
- Hyperphosphatemia is also common
 - Limit dietary phosphorus
 - Treat with oral calcium carbonate (to bind with phosphorus & prevention further absorption)
 - Must take into consideration acid-base balance

Hyperkalemia: Potentially life-threatening 16

- Kidneys regulate potassium balance
 - 90% of dietary potassium intake is excreted through kidneys
- Hyperkalemia common in AKI and CKD due to:
 - Decreased filtration and tubular secretion
 - Altered distribution of potassium by acidosis \rightarrow shifts potassium from intracellular to extracellular compartment
- If potassium reaches levels > 6-7 mEq/L or cardiac conduction abnormalities occur, consider treatment:

Agent(s)	Mechanism	Dose	Onset (min)	Complications
Sodium bicarbonate	Shifts K+ into cells	1 mEq/kg IV over 10-30 min	15–30	Hypernatremia, change in ionized calcium
Albuterol	Shifts K+ into cells	400 µg by nebulizer	30	Tachycardia, hypertension
Glucose and insulin	Shifts K+ into cells	Glucose 0.5 g/kg, insulin 0.1 U/kg IV over 30 min	30–120	Hypoglycemia
Calcium gluconate 10%	Stabilizes membrane	0.5-1 mL/kg IV over 5-15 min	Immediate	Bradycardia, arrhythmias, hypercalcemia
Calcium chloride	Stabilizes membrane	10 mg/kg IV over 5–15 min	Immediate	Bradycardia, arrhythmias, hypercalcemia
Sodium polystyrene sulfonate (Kayexalate®)	Exchanges Na+ for K+ across the colonic mucosa	1 g/kg orally or PR in sorbitol	30–60	Hypernatremia, constipation, colonic membrane irritation if given PR
	intravenous; Na+ = sodium; F	B = per rectum.		

Assess for Hyponatremia ¹⁶

- Hyponatremia is common in AKI as kidneys fail to excrete excess fluid leading to dilutional hyponatremia
- Treatment requires fluid restriction or water removal by dialysis or hemofiltration; slow infusion of hypertonic saline solution may be necessary
- If serum sodium level < 120mEq/L due to excess water retention, seizures may result

Table 1: Sodium Concentration

Mild	130-135 mEq/L
Moderate	120-129 mEq/L
Severe	<120 mEq/L

Image Source: Andreoli. Pediatric Drugs. 2008

Renal Replacement Therapy in Children

The most common <u>initial</u> ESRD treatment modality among children is hemodialysis (56 percent) ⁷⁰

Factors to consider: 16

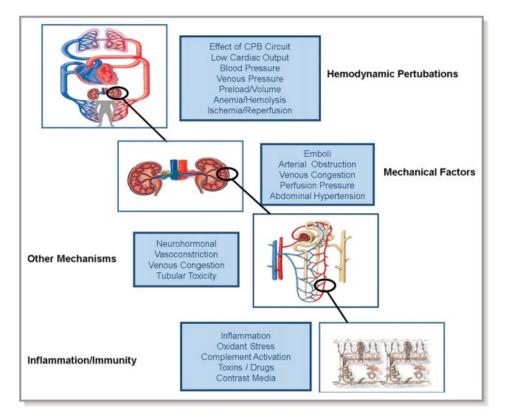
- Age
- Size of child
- Cause of Renal Failure
- Degree of metabolic derangements
- Blood Pressure
- Nutritional Needs
- Peritoneal dialysis vs. intermittent
 - hemodialysis vs. hemofiltration

Table III. Comparison of renal replacement therapies[77

Parameter	Peritoneal dialysis	Hemodialysis	Continuous venovenous hemofiltration
			(with a dialysis circuit)
Solute removal	Good	Excellent	Fair (excellent)
Fluid removal	Good	Excellent	Excellent (excellent)
Need for hemodynamic stability	No	Yes	No (no)
Efficiency for treatment of hyperkalemia	Fair	Excellent	Poor-fair (excellent)
Ease of access	Not difficult	Difficult	Difficult (difficult)
Continuous	Yes	No	Yes (yes)
Need for anticoagulation	No	Usually	Variable (variable)
Risk for possible respiratory compromise	Moderate	Low	Low (low)
Risk for peritonitis	High	No	No (no)
Precipitation of hypotension	Low	High	Moderate (moderate)
Disequilibrium	No	High	Low (moderate)
Requirement for specifically trained staff	Moderate	High	High (high)

Image Source: Andreoli. Pediatric Drugs. 2008

Peritoneal and Hemodialysis in Neonates


- Unique challenges with managing AKI in neonates due to developing nephrons, small blood vessels (difficult hemo catheter access) and peritoneal space. ⁷³
 - Limited evidence that renal replacement therapy (RRT) in patients ≤ 1yo is effective or improves long term outcomes especially patients with:
 - History of abdominal surgeries
 - Surgical site infections
 - Require fluid removal faster than the peritoneal membrane allows
- Peritoneal dialysis (PD) is used more often in children than in adults however, children with CKD are given hemodialysis (HD) more frequently than PD or kidney transplant.⁸⁹
- Cardio-Renal Pediatric Dialysis Emergency Machine (CARPEDIEM) 55
 - Five year prospective study designed to develop and implement this machine which has an extracorporeal priming volume of < 30mL and accurate ultrafiltration to within 1g.
 - Used effectively in infants as small as 2.9 kg

Postoperative AKI Cardiac, General and Liver

Pathophysiology of AKI related to Cardiopulmonary bypass ⁷¹

Nadim and colleagues depict the many variables associated with cardiac surgery & cardiopulmonary bypass:

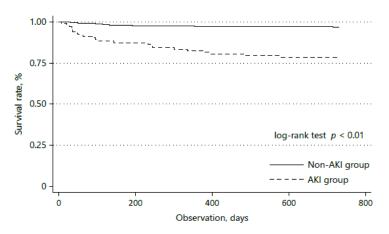
- Nonpulsatile blood flow
- Extensive Hemodilution
- Transfusion load
- Release of free hemoglobin
 & free iron from hemolysis
- Prolonged hypothermia
- Inflammatory response
- Venous congestion

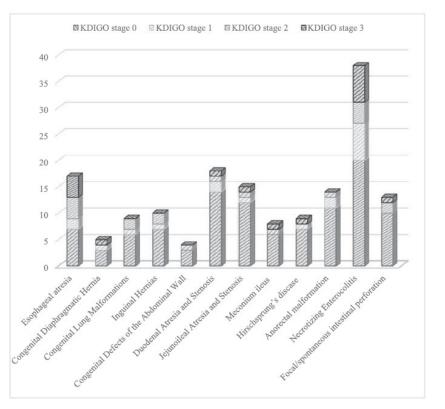
All of these factors can contribute to acute kidney injury.

Image Source: Nadim et al. J Am Heart Assoc. 2018

Peds Cardiac Surgery - AKI

- AKIN definition modified for children 0-36 months old to greater than 0.1 mg/dL increase in SCr was required to assign cardiac surgery-associated acute kidney injury (n=799)⁴⁸
 - 36% of patients had AKI with the majority (76%) having stage II or III AKI.
- A small rise (less than 50%) in SCr on postoperative day 1 predicted AKI within 48 hours after cardiac surgery using pRIFLE criteria ⁷²
- Mortality rate is higher in patients following recovery from AKI, regardless of staging, compared to those without AKI after cardiac surgery ⁴⁸




Image Source: Hirano et al. Am J Nephrol. 2017

AKI after Pediatric General Surgery⁸

Neonates undergoing non-cardiac surgical procedures with general anesthesia (n=160)

- Using nKIDGO, 33.8% of neonates developed AKI
- Higher mortality rate than those who did not develop AKI

AKI after Pediatric Liver Transplant

Liver Transplant AKI Risk Factors 73-75

- Hypoalbuminemia
- High requirement for RBC and 20% human albumin transfusions
- Elevated preop labs: serum sodium, aPTT, bilirubin, end of surgery lactate levels and BUN levels
- High furosemide use and high flow of ascites
- Need for open abdomen

Incidence of AKI after liver transplantation in pediatrics

- pRIFLE is 20% more sensitive than AKIN when determining the severity of AKI (n=57) ⁷⁵
- KDIGO staging has shown 35.8% of patients have AKI (n=117) and 15% of those children required RRT postoperatively.⁷⁴
- Another study has demonstrated 46.2% of patients develop AKI using KDIGO (n=156)⁷³
 - Assessment of AKI according to SCr levels alone failed to identify AKI in 54.3% of patients with low urine output

Table 6. Comparison of Groups in Terms of Intraoperative Management

	Median (IQR) or No. (%)			
	With AKI $(n = 40)$	Without AKI (n = 77)	P Value	
Duration of				
anesthesia, h	9.0 (IQR, 8.5-10.0)	9.5 (IQR, 8.5-10.5)	.412	
Cold ischemia time, h	0 (0)	0 (0)	.609	
Incidence of massive				
hemorrhage	2.0 (5%)	4.0 (5%)	1.000	
PRBC per body				
weight, mL/kg	18.0 (IQR, 9.2-33.2)	16.1 (IQR, 9.5-23.8)	.185	
FFP per body weight,				
mL/kg	11.1 (IQR, 0-25.6)	7.2 (IQR, 0-21.1)	.189	
Crystalloids per body				
weight, mL/kg		111.5 (IQR, 79.8-154.7)	.891	
Use of vasopressors		28 (37%)	1.000	
Use of inotropes		14 (18%)	.342	
Incidence of acidosis		55.0 (72%)	.210	
Lactate levels at end of				
surgery	7.9 (IQR, 4.3-11.2)	5.3 (IQR, 3.3-8.6)	.044	
Highest lactate level,				
mmol/L	7.4 (IQR, 4.8-10.3)	7.2 (IQR, 4.4-9.0)	.422	

G9 -----

Summary

- 1. Anesthesia providers should focus on reducing the anesthesia-related intraoperative risk factors associated with AKI such as:
 - Avoid nephrotoxins
 - Maintain Fluid Balance
 - Ensure preoperative nutrition status
 - Theophylline administration for neonates
- 2. Assessing risk factors preoperatively can assist anesthesia providers in identifying patients who may require additional interventions to prevent AKI.
- 3. Early Recognition of AKI optimizes treatment and reduces risk of progression to later stages of kidney disease.

1 Sutherland SM, Ji J, Sheikhi FH, et al. AKI in hospitalized children: epidemiology and clinical associations in a national cohort. *Clin J Am Soc Nephrol*. 2013;8(10):1661-1669.

2 Kaddourah A, Basu RK, Bagshaw SM, Goldstein SL, AWARE Investigators. Epidemiology of Acute Kidney Injury in Critically III Children and Young Adults. *N Engl J Med*. 2017;376(1):11-20.

3 Jetton JG, Boohaker LJ, Sethi SK, et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. *Lancet Child Adolesc Health*. 2017;1(3):184-194.

4 Toda Y, Sugimoto K. AKI after pediatric cardiac surgery for congenital heart diseases—recent developments in diagnostic criteria and early diagnosis by biomarkers-. *J Intensive Care Med*. 2017;5(1):49.

5 Kellum JA, Bellomo R, Ronco C. The Concept of Acute Kidney Injury and the RIFLE Criteria. In: Vol 156. ; 2007:10-16.

6 Cruz DN, Ricci Z, Ronco C. Clinical review: RIFLE and AKIN--time for reappraisal. Crit Care. 2009;13(3):211.

7 2019 USRDS Annual Data Report: Executive Summary. United States Renal Data System. https://www.usrds.org/2019/view/USRDS 2019 ES final.pdf

8 Wu Y, Hua X, Yang G, Xiang B, Jiang X. Incidence, risk factors, and outcomes of acute kidney injury in neonates after surgical procedures. Pediatr Nephrol. March 2020. doi:10.1007/s00467-020-04532-4

9 Holmes J, Roberts G, May K, et al. The incidence of pediatric acute kidney injury is increased when identified by a change in a creatinine-based electronic alert. Kidney Int. 2017;92(2):432-439.

10 Hessey E, Morissette G, Lacroix J, et al. Long-term Mortality After Acute Kidney Injury in the Pediatric ICU. Hosp Pediatr. 2018;8(5):260-268.

11 Sutherland SM, Kwiatkowski DM. Acute Kidney Injury in Children. Adv Chronic Kidney Dis. 2017;24(6):380-387.

12 Chronic Kidney Disease Surveillance System. Centers for Disease Control and Prevention. https://nccd.cdc.gov/CKD/AreYouAware.aspx?emailDate=July_2017.

13 McDonald SP, Craig JC, Australian and New Zealand Paediatric Nephrology Association. Long-term survival of children with endstage renal disease. *N Engl J Med*. 2004;350(26):2654-2662.

14 2018 USRDS Annual Data Report: Executive Summary. United States Renal Data System. https://www.usrds.org/2018/view/v1_00.aspx.

15 Lantos JD, Warady BA. The evolving ethics of infant dialysis. *Pediatr Nephrol*. 2013;28(10):1943-1947.

16 Andreoli SP. Management of Acute Kidney Injury in Children. *Pediatric Drugs*. 2008;10(6):379-390.

17 Cole SP. Stratification and Risk Reduction of Perioperative Acute Kidney Injury: An Update. *Anesthesiol Clin*. 2018;36(4):539-551.

18 Kellum JA, Bellomo R, Ronco C. The Concept of Acute Kidney Injury and the RIFLE Criteria. In: Vol 156. ; 2007:10-16.

19 Hobson C, Ruchi R, Bihorac A. Perioperative Acute Kidney Injury: Risk Factors and Predictive Strategies. *Crit Care Clin*. 2017;33(2):379-396.

20 Cruz DN, Ricci Z, Ronco C. Clinical review: RIFLE and AKIN--time for reappraisal. Crit Care. 2009;13(3):211.

21 Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acute kidney injury: A systematic review. *Kidney Int.* 2008;73(5):538-546.

22 Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. *Nephron Clin Pract*. 2012;120(4):c179-c184.

23 Selewski DT, Cornell TT, Heung M, et al. Validation of the KDIGO acute kidney injury criteria in a pediatric critical care population. *Intensive Care Med*. 2014;40(10):1481-1488.

24 Sutherland SM, Byrnes JJ, Kothari M, et al. AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. *Clin J Am Soc Nephrol*. 2015;10(4):554-561.

25 Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol. 2012;2(2):1303-1353.

26 Schwartz GJ, Schneider MF, Maier PS, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. *Kidney Int*. 2012;82(4):445-453.

27 Anders H-J, Schaefer L. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. *J Am Soc Nephrol*. 2014;25(7):1387-1400.

28 Zarbock A, Koyner JL, Hoste EAJ, Kellum JA. Update on Perioperative Acute Kidney Injury. Anesth Analg. 2018;127(5):1236-1245

29 Makris K, Spanou L. Acute Kidney Injury: Definition, Pathophysiology and Clinical Phenotypes. *Clin Biochem Rev*. 2016;37(2):85-98.

30 Li Z, Kang Z, Duan C, et al. Clinical and pathological features of acute kidney injury in children. *Ren Fail*. 2014;36(7):1023-1028.

31 Gumbert SD, Kork F, Jackson ML, et al. Perioperative Acute Kidney Injury. Anesthesiology. 2020;132(1):180-204.

32 Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol. 2012;2(2):1303-1353.

33 Meersch M, Volmering S, Zarbock A. Prevention of acute kidney injury. *Best Pract Res Clin Anaesthesiol*. 2017;31(3):361-370.

34 Meersch M, Schmidt C, Zarbock A. Perioperative Acute Kidney Injury: An Under-Recognized Problem. *Anesth Analg*. 2017;125(4):1223-1232.

35 Hobson C, Ruchi R, Bihorac A. Perioperative Acute Kidney Injury: Risk Factors and Predictive Strategies. Crit Care Clin. 2017;33(2):379-396.

36 Slater MB, Gruneir A, Rochon PA, Howard AW, Koren G, Parshuram CS. Identifying High-Risk Medications Associated with Acute Kidney Injury in Critically III Patients: A Pharmacoepidemiologic Evaluation. Paediatr Drugs. 2017;19(1):59-67.

37 Downes KJ, Cowden C, Laskin BL, et al. Association of Acute Kidney Injury With Concomitant Vancomycin and Piperacillin/Tazobactam Treatment Among Hospitalized Children. *JAMA Pediatr*. 2017;171(12):e173219.

38 Abouelkheir M, Alsubaie S. Pediatric acute kidney injury induced by concomitant vancomycin and piperacillin--tazobactam. *Pediatr Int*. 2018;60(2):136-141.

39 Downes KJ, Patil NR, Rao MB, et al. Risk factors for acute kidney injury during aminoglycoside therapy in patients with cystic fibrosis. *Pediatr Nephrol*. 2015;30(10):1879-1888.

40 Downes KJ, Rao MB, Kahill L, Nguyen H, Clancy JP, Goldstein SL. Daily serum creatinine monitoring promotes earlier detection of acute kidney injury in children and adolescents with cystic fibrosis. *J Cyst Fibros*. 2014;13(4):435-441.

41 Zappitelli M, Moffett BS, Hyder A, Goldstein SL. Acute kidney injury in non-critically ill children treated with aminoglycoside antibiotics in a tertiary healthcare centre: a retrospective cohort study. *Nephrol Dial Transplant*. 2011;26(1):144-150.

42 Goldstein SL, Kirkendall E, Nguyen H, et al. Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. *Pediatrics*. 2013;132(3):e756-e767.

43 Hursh BE, Ronsley R, Islam N, Mammen C, Panagiotopoulos C. Acute kidney injury in children with type 1 diabetes hospitalized for diabetic ketoacidosis. *JAMA Pediatr*. 2017;171(5):e170020-e170020.

44 de Melo Bezerra Cavalcante CT, Castelo Branco KM, Pinto Júnior VC, et al. Syndecan-1 improves severe acute kidney injury prediction after pediatric cardiac surgery. *J Thorac Cardiovasc Surg*. 2016;152(1):178-186.e2.

45 Baddam S, Aban I, Hilliard L, Howard T, Askenazi D, Lebensburger JD. Acute kidney injury during a pediatric sickle cell vasoocclusive pain crisis. *Pediatr Nephrol*. 2017;32(8):1451-1456.

46 Li S, Krawczeski CD, Zappitelli M, et al. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. *Crit Care Med*. 2011;39(6):1493-1499.

47 Chawla LS, Bellomo R, Bihorac A, et al. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat Rev Nephrol. 2017;13(4):241-257.

48 Hirano D, Ito A, Yamada A, et al. Independent Risk Factors and 2-Year Outcomes of Acute Kidney Injury after Surgery for Congenital Heart Disease. Am J Nephrol. 2017;46(3):204-209

49 Hu G-H, Duan L, Jiang M, Zhang C-L, Duan Y-Y. Wider intraoperative glycemic fluctuation increases risk of acute kidney injury after pediatric cardiac surgery. *Ren Fail*. 2018;40(1):611-617.

50 Goldstein SL, Mottes T, Simpson K, et al. A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. *Kidney Int*. 2016;90(1):212-221.

51 Children's Hospitals for Patient Safety

52 Goldstein SL. Pediatric Acute Kidney Injury-The Time for Nihilism Is Over. Front Pediatr. 2020;8:16.

53 Goldstein SL, Mottes T, Simpson K, et al. A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. *Kidney Int*. 2016;90(1):212-221.

54 Park S-K, Hur M, Kim E, et al. Risk Factors for Acute Kidney Injury after Congenital Cardiac Surgery in Infants and Children: A Retrospective Observational Study. *PLoS One*. 2016;11(11):e0166328.

55 Piggott KD, Soni M, Decampli WM, et al. Acute Kidney Injury and Fluid Overload in Neonates Following Surgery for Congenital Heart Disease. *World J Pediatr Congenit Heart Surg*. 2015;6(3):401-406.

56 Meersch M, Schmidt C, Hoffmeier A, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. *Intensive Care Med*. 2017;43(11):1551-1561.

57 Göcze I, Jauch D, Götz M, et al. Biomarker-guided Intervention to Prevent Acute Kidney Injury After Major Surgery: The Prospective Randomized BigpAK Study. *Ann Surg*. 2018;267(6):1013-1020.

58 Gien J, Soranno D. Identifying the Patient at Risk for Acute Kidney Injury: Pediatric Sepsis Biomarker Risk Model Study. *Am J Respir Crit Care Med*. 2020;201(7):764-766.

59 Liu KD, Goldstein SL, Vijayan A, et al. AKI!Now Initiative: Recommendations for Awareness, Recognition, and Management of AKI. *Clinical Journal of the American Society of Nephrology*. 2020:CJN.15611219. doi:10.2215/cjn.15611219

60 Basu RK, Zappitelli M, Brunner L, et al. Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. *Kidney Int*. 2014;85(3):659-667.

61 Bennett M, Dent CL, Ma Q, et al. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: A prospective study. *Clin J Am Soc Nephrol*. 2008;3(3):665-673.

62 Krawczeski CD, Goldstein SL, Woo JG, et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. *J Am Coll Cardiol*. 2011;58(22):2301-2309.

63 Sirota JC, Walcher A, Faubel S, et al. Urine IL-18, NGAL, IL-8 and serum IL-8 are biomarkers of acute kidney injury following liver transplantation. BMC Nephrol. 2013;14:17.

64 Mishra J, Ma Q, Kelly C, et al. Kidney NGAL is a novel early marker of acute injury following transplantation. Pediatr Nephrol. 2006;21(6):856-863.

65 Hirsch R, Dent C, Pfriem H, et al. NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr Nephrol. 2007;22(12):2089-2095.

66 Wheeler DS, Devarajan P, Ma Q, et al. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit Care Med. 2008;36(4):1297-1303.

67 Abitbol CL, Seeherunvong W, Galarza MG, et al. Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? *J Pediatr*. 2014;164(5):1026-1031.e2.

68 Burra V, Nagaraja PS, Singh NG, Prabhakar V, Manjunatha N. Early prediction of acute kidney injury using serum phosphorus as a biomarker in pediatric cardiac surgical patients. *Ann Card Anaesth*. 2018;21(4):455-459

69 Basu RK, Kaddourah A, Goldstein SL, AWARE Study Investigators. Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: a multicentre, multinational, prospective observational study. *Lancet Child Adolesc Health*. 2018;2(2):112-120.

70 U.S. Department of Health and Human Services. Kidney Disease Statistics for the United States. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/health-statistics/kidney-disease.

71 Nadim MK, Forni LG, Bihorac A, et al. Cardiac and Vascular Surgery-Associated Acute Kidney Injury: The 20th International Consensus Conference of the ADQI (Acute Disease Quality Initiative) Group. *J Am Heart Assoc*. 2018;7(11). doi:10.1161/JAHA.118.008834

72 Zappitelli M, Bernier P-L, Saczkowski RS, et al. A small post-operative rise in serum creatinine predicts acute kidney injury in children undergoing cardiac surgery. Kidney Int. 2009;76(8):885-892.

73 Hamada M, Matsukawa S, Shimizu S, Kai S, Mizota T. Acute kidney injury after pediatric liver transplantation: incidence, risk factors, and association with outcome. *J Anesth*. 2017;31(5):758-763.

74 Sahinturk H, Ozdemirkan A, Zeyneloglu P, Gedik E, Pirat A, Haberal M. Early Postoperative Acute Kidney Injury Among Pediatric Liver Transplant Recipients. *Exp Clin Transplant*. March 2019. doi:10.6002/ect.2018.0214

75 Ferah O, Akbulut A, Açik ME, et al. Acute Kidney Injury After Pediatric Liver Transplantation. *Transplant Proc.* 2019;51(7):2486-2491.

