RESEARCH AND QI PERSPECTIVES ON SUSTAINABILITY

SEEMA GANDHI, MD

CLINICAL PROFESSOR, DEPARTMENT OF ANESTHESIA AND PERIOPERATIVE CARE

UNIVERSITY OF CALIFORNIA, SAN FRANCISCO

Background

- The harmful environmental impacts of volatile anesthetics are well documented.
- Strategies to minimize these impacts include:
 - Avoiding desflurane and nitrous oxide use
 - Reduction of fresh gas flow (FGF) rates
 - Total intravenous anesthesia (TIVA)
 - Regional anesthesia

Ryan, S. M., & Nielsen, C. J. (2010). Global warming potential of inhaled anesthetics: application to clinical use. Anesthesia & Analgesia, 111(1), 92-98. Sherman, J., Le, C., Lamers, V., & Eckelman, M. (2012). Life cycle greenhouse gas emissions of anesthetic drugs. Anesthesia & Analgesia, 114(5), 1086-1090.

UCSF's Journey

- Education
 - Grand rounds
 - Resident didactics
 - Sustainability newsletter
- Personalized feedback reports

Desflurane vaporizer only available in the workroom

Clinical Decision Support (CDS) tool

UCSF Anesthesia Department Sustainability Newsletter

TAKING CARS OFF THE STREETS OF SF

Updates on the Low Gas Flow BPA with contributions from Dr. Priya Ramaswamy and Dr. Rishi Kothari

Personalized "Hall of Fame" Report

		Weight Average of				-	-
	Name	<u>Desflurane</u>	<u>Sevoflurane</u>	<u>Isoflurane</u>	<u>n Des</u>	<u>n Sevo</u>	<u>n Iso</u>
-	CORNEJO, DEBORAH	0.42	1.83		2140	491	
	KINJO, SAKURA	0.82	1.05		1471	1917	
_	CAWITT, JOHN	0.87	2.27		520	2251	
	ALTER, BENEDICT	0.88	1.71		937	260	
	-LATRONICA, MARK LOUIS-	0.89	1.94		2017	1948	
•	DARAS, MARY JANE	0.90	2.00	0.70	163	3151	207
	SABHLOK, SANDEEP	0.90	2.10		426	179	
	THOENY, ALLISON LEE	0.92	1.95		2109	<mark>938</mark>	
	NG, WILLIAM CHUK KIT	0.93	2.04	2.14	586	1543	31
	ROUINE RAPP, KATHRYN	0.93	2.86	1.07	1419	2364	95
	LOBO, ERROL P.	0.97	2.00		1044	1065	
	NAIDU, RAMANA KUMAR	0.99	1.76		141	316	
	WESTON, STEPHEN DWIGHT	0.99	2.01	3.43	956	1146	36
	PEPPER, MARCI	1.00	1.66	1.10	470	576	148

Active Non-interruptive BPA for FGF

5 r	Numn Interval: minutes ET N2O %	3/2 0730	0735 	0740 	0745 	0750 	0755 	0800 	0805 	0810 	0815	0820 c.2	
M	ET Sevoflurane %										1.3	1.3	
	Ins												
令	Urine mi												
				Best	Practice Adv	risory - DoN	lotUse, Carly						
1	Important (1)											*	
L I	() Sevoflurane in us	se, and fre	esh gas flo	w is > 0.7 L	/min. Pleas	e conside	r reducing y	our FGF.				\$	
4	Last five ager	nt value	20										
	Lust into ugoi		21 0817	03/0	2/21 081	8 0	3/02/21 0	819	03/02/21	0820			
	Set Agent: Set Total Gas	Sevoflu 0.95 L/			oflurane		evofluran 95 L/min		Sevoflur 0.95 L/m				
	Flow:												Net
1	0.14		21 0821										- 200
2	Set Agent: Set Total Gas Flow:	Sevoflu 0.95 L/											- 150
	a Document a	reason th	nis BPA sh	ould be turr	ned off for t	his case							
	Acknowledge Reason								_	- 100			
	Acknowledge for	r 10 Mins											
Р													- 50
								~	<u>A</u> ccept		Di <u>s</u> miss		— o
~	ETCO2 mmHg										43	42	
2	Ane Vent Mode										PCV-VG	PCV-VG	

ORIGINAL CLINICAL RESEARCH REPORT

Reducing Volatile Anesthetic Waste Using a Commercial Electronic Health Record Clinical Decision Support Tool to Lower Fresh Gas Flows

Andrea V. Olmos, MD,* David Robinowitz, MD,† John R. Feiner, MD,‡ Catherine L. Chen, MD, MPH,‡§I and Seema Gandhi, MD‡

RESULTS: Segmented regression of the interrupted times series demonstrated a decrease in mean FGF by 0.6 L/min (95% CI, 0.6–0.6 L/min; P < .0001) for sevoflurane and 0.2 L/min (95% CI, 0.2–0.3 L/min; P < .0001) for desflurane immediately after implementation of the intervention. For sevoflurane, mL/MAC-h decreased by 3.8 mL/MAC-h (95% CI, 3.6–4.1 mL/MAC-h; P < .0001) after implementation of the intervention and decreased by 4.1 mL/MAC-h (95% CI, 2.6–5.6 mL/MAC-h; P < .0001) for desflurane. Slopes for both FGF and mL/MAC-h in the postintervention period were statistically less negative than the preintervention slopes (P < .0001 for sevoflurane and P < .01 for desflurane).

CONCLUSIONS: A commercial AIMS-based decision support tool can be adopted to change provider FGF management patterns and reduce volatile anesthetic consumption in a sustainable fashion. (Anesth Analg 2022;00:00–00)

Results

Mean mL of Anesthetic Agent per MAC-hour over time

Anesthetic Agent Sevoflurane

	Deceline			DValue
	Baseline	Intervention	Difference (95% CI)	P Value
Sevoflurane				
n cases	44,899 (62.5%)	26,911 (37.5%)		
Duration (hours)	2.0 ± 1.7	2.1 ± 1.8	0.1 (0.1 to 0.1)	< 0.0001
Fresh Gas Flow (L/minute)	2.0 ± 0.6	1.2 ± 0.5	-0.8 (-0.8, -0.8)	< 0.0001
Mean End-tidal Agent	1.6 ± 0.6	1.5 ± 0.5	-0.1 (-0.1, -0.1)	< 0.0001
Concentration (volume %)				
MAC	0.9 ± 0.3	0.9 ± 0.3	0.0 (-0.1, 0.0)	< 0.0001
Total mL/hour	13.8 ± 6.8	8.2 ± 4.8	-5.5 (-5.6, -5.4)	< 0.0001
mL/MAC-hour	14.5 ± 5.3	9.3 ± 6.9	-5.2 (-5.3, -5.1)	< 0.0001
\$/MAC-hour	\$5.82 ± \$2.11	\$3.72 ± \$2.77	-\$2.10 (-\$2.13, -\$2.06)	< 0.0001

"Maintenance" is defined as procedure start to procedure end.

CI, confidence interval; MAC, minimum alveolar concentration

Baseline period was from July 22, 2015 to July 10, 2018. Intervention was implemented on August 29, 2018. Data during the transition period (July 11, 2018 to August 28, 2018) were excluded.

The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems

Andrea J MacNeill, Robert Lillywhite, Carl J Brown

Summary

Background Climate change is a major global public health priority. The delivery of health-care services generates considerable greenhouse gas emissions. Operating theatres are a resource-intensive subsector of health care, with high energy demands, consumable throughput, and waste volumes. The environmental impacts of these activities are generally accepted as necessary for the provision of quality care, but have not been examined in detail. In this study, we estimate the carbon footprint of operating theatres in hospitals in three health systems.

Lancet Planet Health 2017; 1: e381-88

0a

See Comment page e357

Division of General Surgery, University of British Columbia Vancouver, Canada (A | MacNeill MD.

Figure 2

Relative contribution of scopes 1, 2, and 3 to the carbon footprint of operating theatres at (A) Vancouver General Hospital, (B) University of Minnesota Medical Center, and (C) John Radcliffe Hospital

MacNeill, A. J., Lillywhite, R., & Brown, C. J. (2017). The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems. The Lancet Planetary Health, 1 (9), e381-e388.

Study Aims

- Describe patterns of volatile agent and nitrous oxide use and trends over time
- Identify factors associated with agent consumption including patient characteristics, airway type and procedure
- Estimate variation in agent consumption at provider and institutional level that is not explained by patient level variables

MPOG Study Overview

Practice Patterns of Volatile Anesthetic Use During General Anesthesia

- Describe patterns of volatile agent and nitrous oxide use and trends over time
- Identify factors associated with agent consumption including patient characteristics, airway type and procedure
- Estimate variation in agent consumption at provider and institutional level that is not explained by patient level variables

Data Sources:

- MPOG database SUS I metrics)
 - > > 5 million cases
 - > Across 61 centers
 - SUS-OI metrics
- Survey of MPOG institutions
 - > To understand behavioral changes

Primary Outcomes:

- Estimated anesthetic agent consumption (mL/min) during general anesthesia
 - Reported by each agent
 - Convert to CO₂ equivalent based on LCA*

Study Significance

- Descriptive analysis of volatile anesthetic agent use across US
 - Variabilities by providers and institution
 - Presence or absence of nitrous oxide
- Quantify the excess carbon emissions from "wasteful" practice patterns
- Identify ongoing mitigation efforts by various institutions (via survey)
- Provide guidance for future SUS metrics

You must be the change You want to see in the world

Mahatma Gandhi