THE SURGICAL PAUSE: Preoperative Frailty Screening and Prehabilitation MSQC/ASPIRE April 8, 2022

Daniel E Hall, MD, MDiv, MHSc

Professor of Surgery, Anesthesia and Perioperative Medicine, University of Pittsburgh

Medical Director, High Risk Populations and Outcomes, Wolff Center at UPMC

Staff Surgeon, VA Pittsburgh Healthcare System

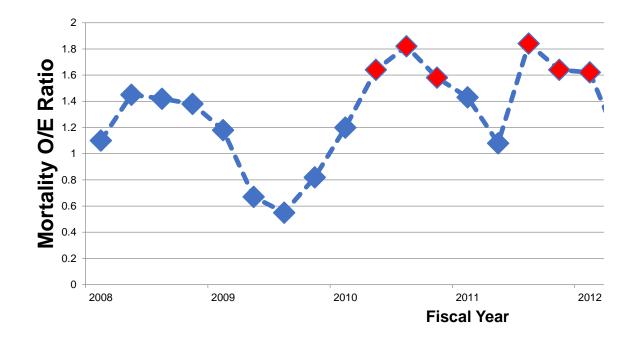
Core Investigator, Center for Health Equity Research and Promotion, VA Pittsburgh Healthcare System

National Diffusion of Excellence Fellow, VA

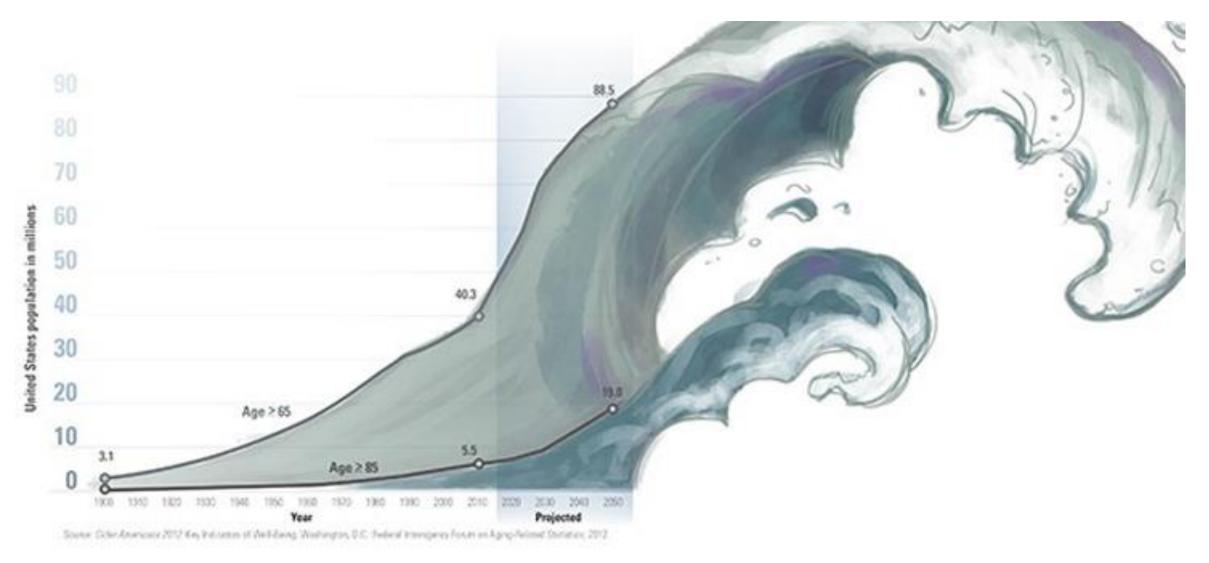
VA Pittsburgh Healthcare System

Outline

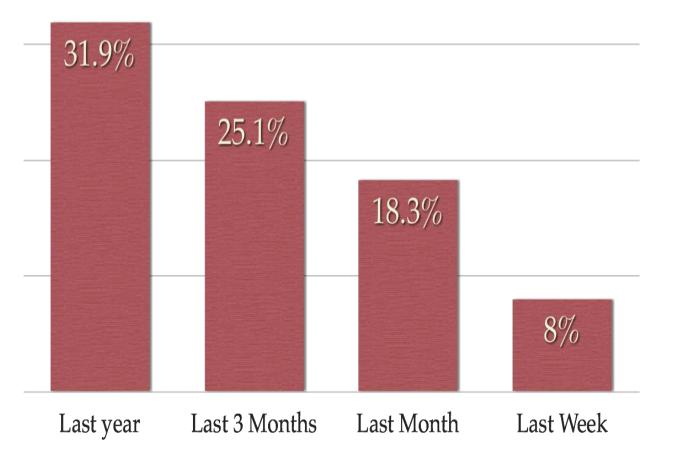
- The Risk Analysis Index & the Surgical Pause
 - Origin story
 - Conceptual framework
 - Data—It works
- Your Questions

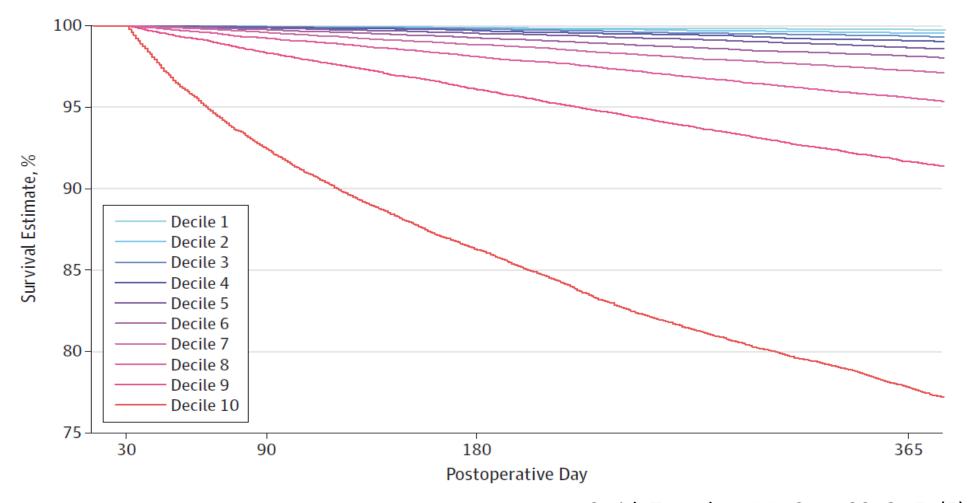


 NOT going to tell you who should/should not have surgery


- May cause anxiety
 - •New ways of thinking
 - Changing culture is hard

Origin Story & Conceptual Framework Omaha: We've got a problem


Observed/Expected Mortality at the Omaha VAMC (Red points are > 90% Confidence Interval)

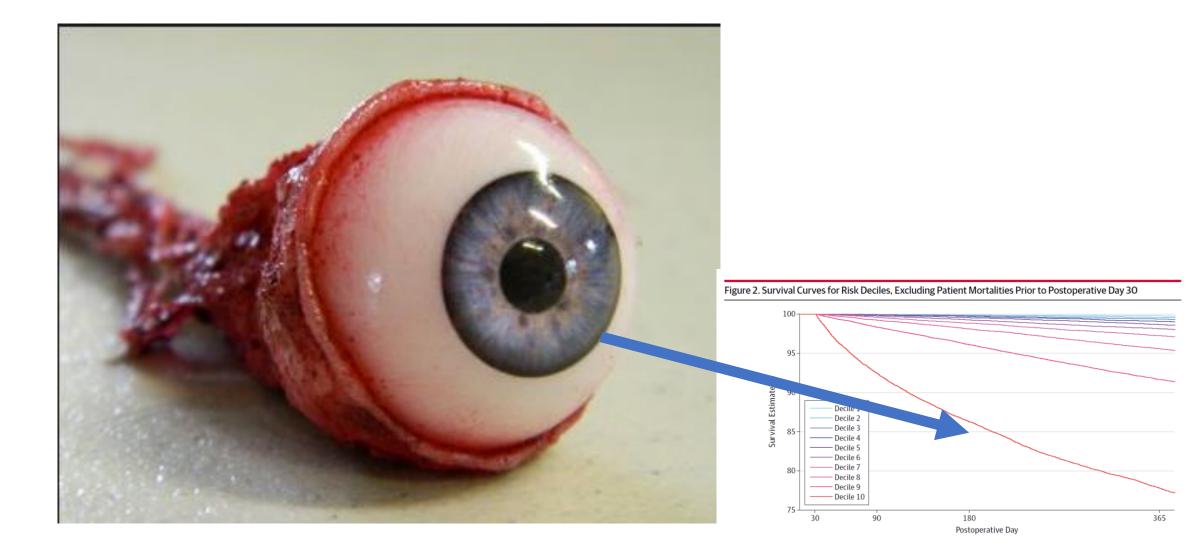

- 1/3 of patients had surgical interventions in last year of life
 - Majority occurred in month before death
- Surgery associated with
 - More admissions
 - Longer LOS
 - Greater ICU LOS

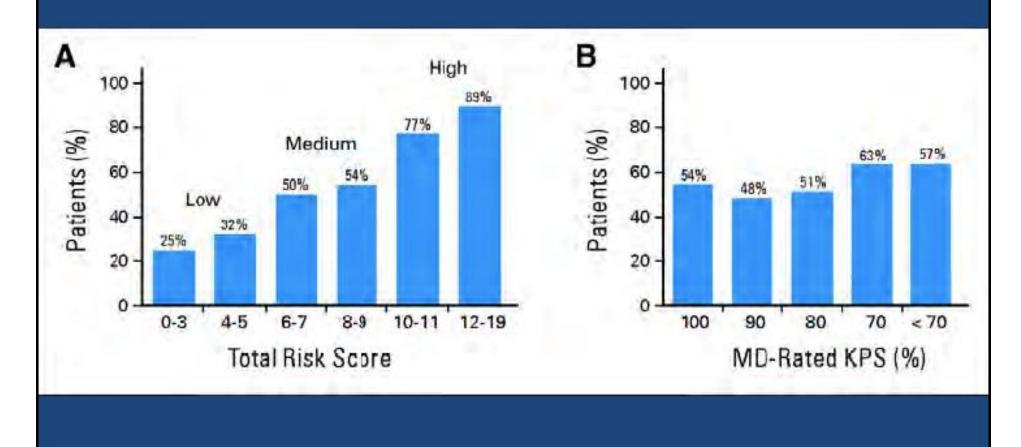
Kwok AC. Lancet. 2011;378(9800):1408-1413.

We know some patients don't do well

Figure 2. Survival Curves for Risk Deciles, Excluding Patient Mortalities Prior to Postoperative Day 30

Smith T, et al., JAMA Surg. 2016;151(5):417-422.


But surgeons are optimists!

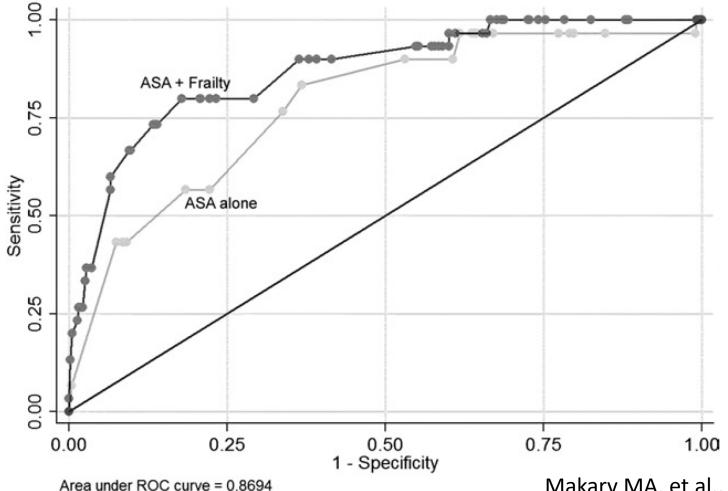


"Where all the surgeons are strong, all the anesthesiologists are good looking, and all the patients are above average."

Now how accurate is your eyeball?

Risk score versus physician-rated KPS to predict chemotherapy toxicity

Hurria A, JCO 2011;29:3457-3465

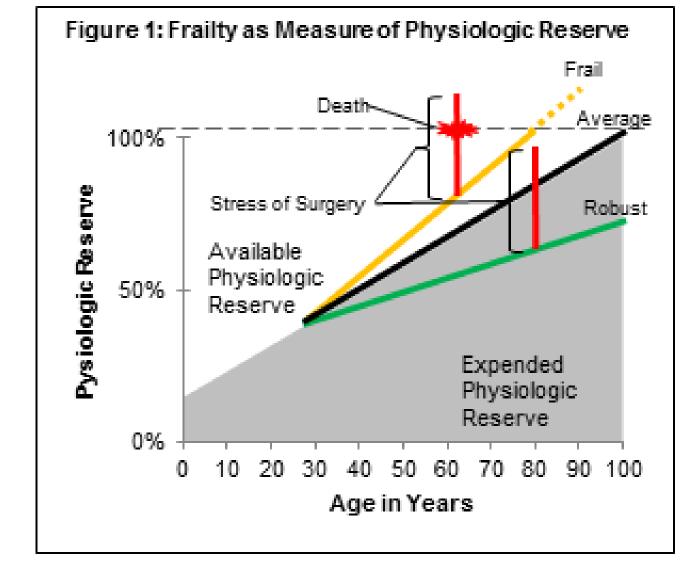

©2011 by American Society of Clinical Oncology

JOURNAL OF CLINICAL ONCOLOGY

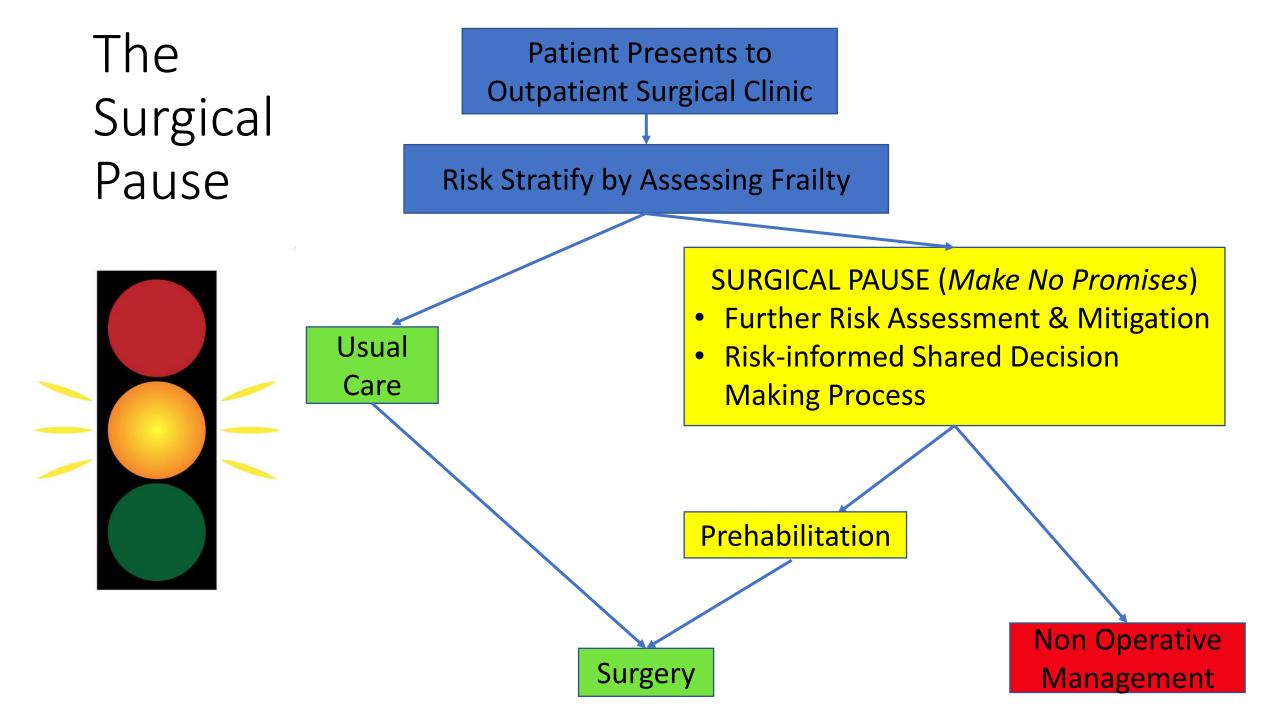
Systematic, multifactorial, risk assessment

- "Foot of the bed" assessments of cardiac risk not reliable due to disagreement between clinicians.
 - Hii TB, et al. *Heart Lung Circ*. 2015;24(6):551-556.
- Multifactorial tools are superior to single-item assessments.
 - Afilalo J, et al. Circulation. 2017;135(21):2025-2027
 - Hurria A, et al. *J Clin Oncol*. 2011;29(25):3457-3465.
 - Fried L, et al. The Journals of Gerontology: Series A, 2004; 59(3):M255–M263
- Vascular Surgeons effectively estimate mortality, but underestimate complications and long-term disability compared to multifactorial tool.
 - George EL, et al. *J Surg Res*. 2020;248:38-44.
- Modified Geriatric Assessment (mGA) effectively identifies frailty among patients that oncologists considered non frail (e.g. 个 sensitivity).
 - Kirkhus, et al. Br J Cancer 117, 470–477 (2017)

Frailty is the Best Predictor of Postoperative Outcomes....


- Mortality
- Complications
- Failure to Rescue
- Length of Stay
- Readmission
- Loss of Independence

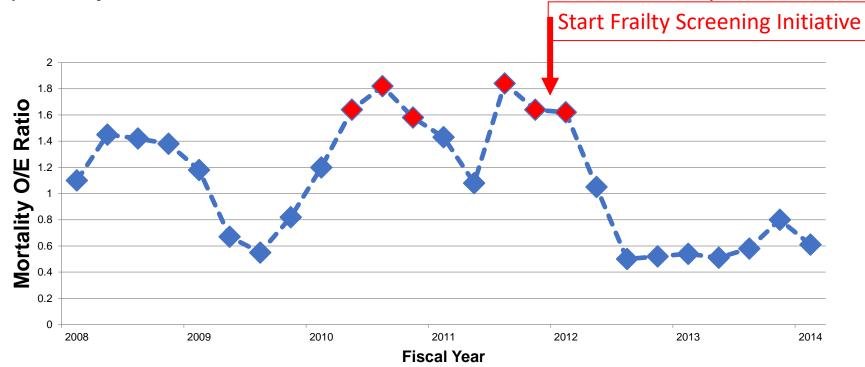
Makary MA, et al., J Am Coll Surg. 2010;210(6):901-908


Why Frailty?

A clinical syndrome of decreased physiological reserve

- process whereby small deficits accumulate in multiple adaptive systems, any one of which might be clinically insignificant, but together they produce significant vulnerability to stress that can lead to catastrophic decompensation.
- multiple causes and contributors
- characterized by diminished strength, endurance, nutrition, and cognitive capacity
- More than just age or the sum of comorbidities (not captured by standard risk stratification tools like ASA or Eagle criteria).

Robert, C. M., & Sean, M. B. (2014). *Physiological Reserve and Frailty in Critical Illness*. Oxford, UK: Oxford University Press.



So what happened in Omaha?

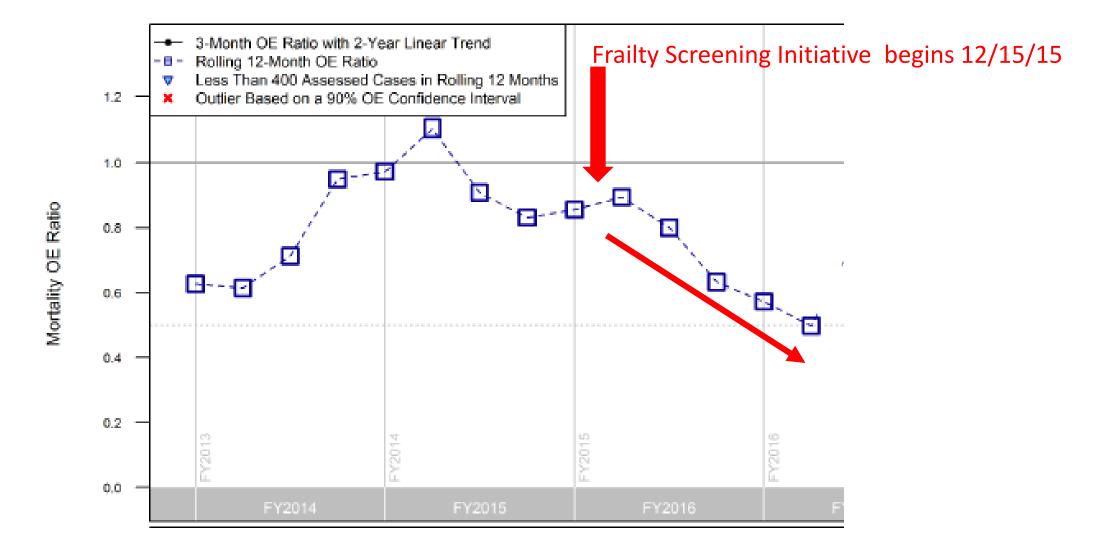
- Modified an existing frailty measure (MMRI) for use in surgery
 - RISK ANALYSIS INDEX (RAI)
 - Made it mandatory to book OR time
- Conducted weekly review of all surgeries scheduled on frail patients.
 - Spoke with surgeon to review operative decision making.
 - Spoke with anesthesiologists to optimize anesthetic plan.
 - Spoke with intensivists to encourage post-operative rescue from near certain complications.
 - Aggressive referral for preoperative palliative care to clarify goals.

Outcomes: Decreased Mortality

Observed/Expected Mortality at the Omaha VAMC (Red points are > 90% Confidence Interval)

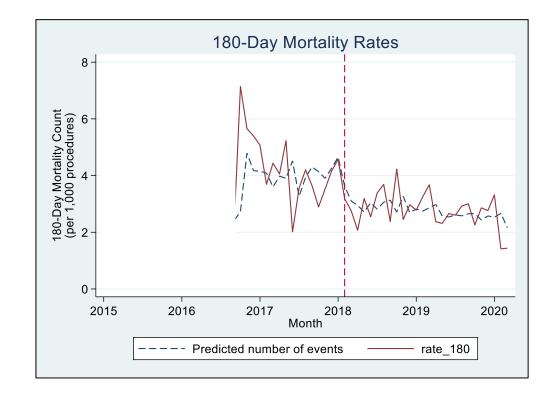
Omaha Frailty Screening Initiative (FSI)

- 180-day mortality among frail fell from **23.9%** to **7.7%** (p<0.001)
- 3-fold survival advantage after FSI implementation (OR 2.87 [95%CI 1.98-4.16]), controlling for:
 - Age
 - Frailty
 - Predicted mortality based on VA risk-adjustment


Hall, DE. et al. JAMA Surgery 152(3) doi:10.1001/jamasurg.2016.4202 (Nov 23).

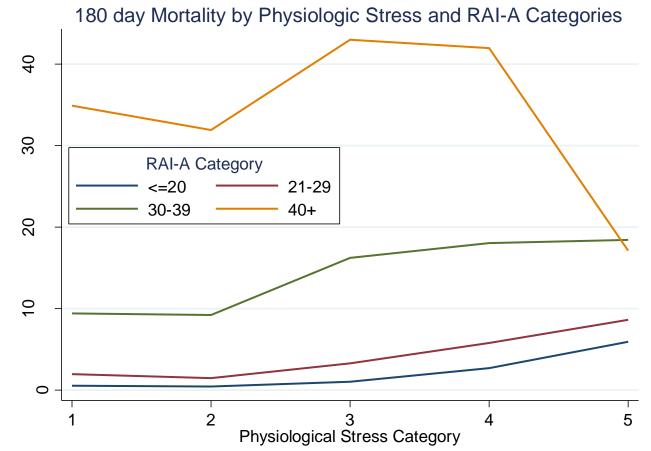
FSI Changed Perioperative Palliative Care

- Changed Pattern of Perioperative Palliative Care Care Consult
 - *Rate increased* from 32 to 56 per year.
 - More often *ordered by a surgeon* (56.7% vs 24.4%; p< 0.05).
 - More often *ordered before surgery* (52.0% vs 26.3%; p< 0.05).
- Controlling for age, frailty and *whether the patient had surgery*, Preoperative Palliative Care Consult reduced risk of death when:
 - ordered by a surgeon (AOR 0.50[95% CI 0.30-0.83], p=0.007).
 - ordered before surgery (AOR 0.52[95% CI 0.30-0.90], p=0.02).
 - ordered by surgeon before surgery (AOR 0.27[95% CI 0.11-068], p=0.006)


Ernst, K. F., et al(2014). JAMA Surg, 149(11), 1121-1126.

Decreased Mortality at VA Pittsburgh

Decreased Mortality at UPMC


- Interrupted Time Sequence Analysis with segmented Poisson regression.
- 51,385 patients July 2016-November 2020
 - 23,153 before BPA Implementation
 - 28,232 after BPA Implementation
- Overall 180-day mortality reduction
 - aOR 0.76 [95% CI 0.65-0.88]
- 2-fold survival advantage among frail.
 - aOR for survival 2.14 [95% CI 1.42-3.21]
 - Cut raw mortality among frail from 14% to 7%
- Lag-adjusted ITS model
 - 0.03 fewer 180-day mortalities/1,000 procedures/month

rate_180	Coefficient	Robust std. err.	Z	P> z	[95% conf.	interval]
death_time	.0206505	.0037606	5.49	0.000	.0132799	.0280211
intervention	2864171	.1280697	-2.24	0.025	5374291	0354051
interaction	0278729	.0082757	-3.37	0.001	0440931	0116528
lag_180	.1069392	.0404603	2.64	0.008	.0276385	.1862398
_cons	.3495465	.123177	2.84	0.005	.1081239	.590969

OK, but... I can get anyone through a minor procedure: RAI, Operative Stress and Mortality

- Delphi consensus methodology to rate operative physiological stress.
 - 566 surgical procedures that account for 90% all VA surgery
 - Ratings by panel of surgeons and anesthesiologists
 - Consensus reached after 3 rounds of rating.
- 5-point Operative Stress Score:
 - 1-cystoscopy, hydrocele, ganglion cyst
 - 2-inguinal or umbilical hernia, arthroscopy of kn or shoulder
 - 3-cholecystectomy, CEA, arthroplasty of knee, shoulder or hip
 - 4-open colectomy, prostatectomy, pulmonary lobectomy or segmentectomy
 - 5-abdominal aortic aneurysm,
 - pancreaticoduodenectomy, esophagectomy

Shinall, Myrick C. et al. JAMA Surgery 10.1001/jamasurg.2019.4620 (Nov 13).

NO SUCH THING AS LOW-RISK SURGERY FOR THE FRAIL

Study warns on	surgery risk f	or frail patients					
Mortality rates 30 days after surgery*							
	~ ^ ^ ~ ~	Λ					
	• •						
	Tr						
Non-frail patients	Frail patients	Very frail patients					
Low-risk surgeries:	Low-risk surgeries:	Low-risk surgeries:					
0.22%	1.55%	10.34%					
Madavata viale avveragiant							
Moderate-risk surgeries:	Moderate-risk surgeries:	Moderate-risk surgeries:					
0.91%	Moderate-risk surgeries: 5.13%	Moderate-risk surgeries: 18.74%					

* A surgery mortality rate of 1% is usually considered high-risk. From "Association of preoperative patient frailty and operative stress with postoperative mortality," JAMA Surgery, Nov. 13, 2019. Infographic by VA Research Communications, November 2019. Photo: © iStock/A-Digit

Practical Implementation at UPMC

Frailty Screening

RAI Survey

1. Do you live in pla	ace other than your	own home? 🛛 No	□Yes		
,	ere: Nursing Home egin living in the pla	e Skilled Nursing Fa ace you are currently	residing? Less than 3		to 1 year
2. Any kidney failur	e, kidney not worki	ng well, or seeing a ki	dney doctor (nephrol	ogist)?	No 🛛 Yes
If yes circle one:	was your nephrolog	ist visit for Kidney sto	ones Other Both K	idney Stones and Ot	ther problem
3. Any history of ch	ronic (long-term) co	ongestive heart failure	e (CHF)?		No 🗆 Yes
	breath when restin	g? resting or doing minimal	activities, like walking to t		No 🗆 Yes
, ,	, ,	diagnosed with or tr sit today is to discuss th			No 🛛 Yes
Prompt: Do you or your	family notice that you a	re not eating as much?			No 🛛 Yes
8. During the last 3		me difficult for you to)		No □Yes No □Yes
8. During the last 3 remember things	months has it beco or organize your th	me difficult for you to loughts?			No □Yes
8. During the last 3 remember things	months has it beco	me difficult for you to	Needs Help from others to get around the house or neighborhood		No Yes Totally dependent o
 B. During the last 3 remember things Getting around (mobility) 	months has it beco or organize your th Can get around without	me difficult for you to oughts? Needs help from a cane, walker or	Needs Help from others to get around the house	Needs help getting in or out	No Yes Totally dependent o others to get around Totally dependent o
8. During the last 3 remember things 9. Getting around	months has it become or organize your the Can get around without any help Can plan and prepare own	me difficult for you to oughts? Needs help from a cane, walker or scooter Needs help	Needs Help from others to get around the house or neighborhood Needs help	Needs help getting in or out of a chair Needs help	No Yes Totally dependent o others to get around Totally dependent o others to eat

Online RAI

Online Revised RAI (Demo O... 🕏 Revised RAI

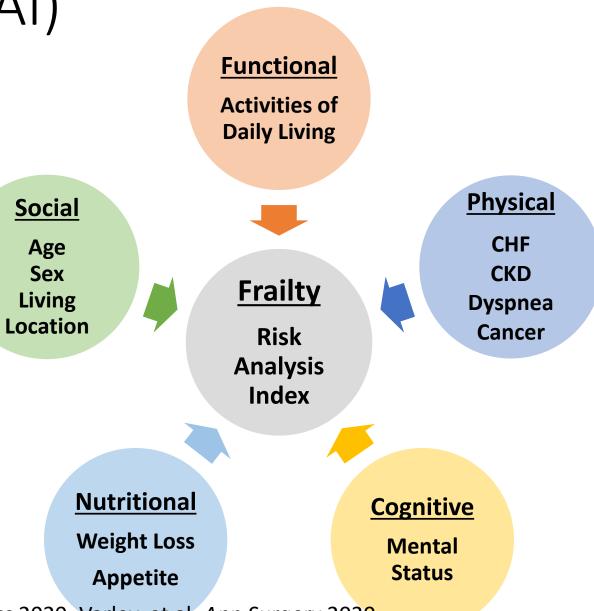
Resize f

Revised RAI

Scoring

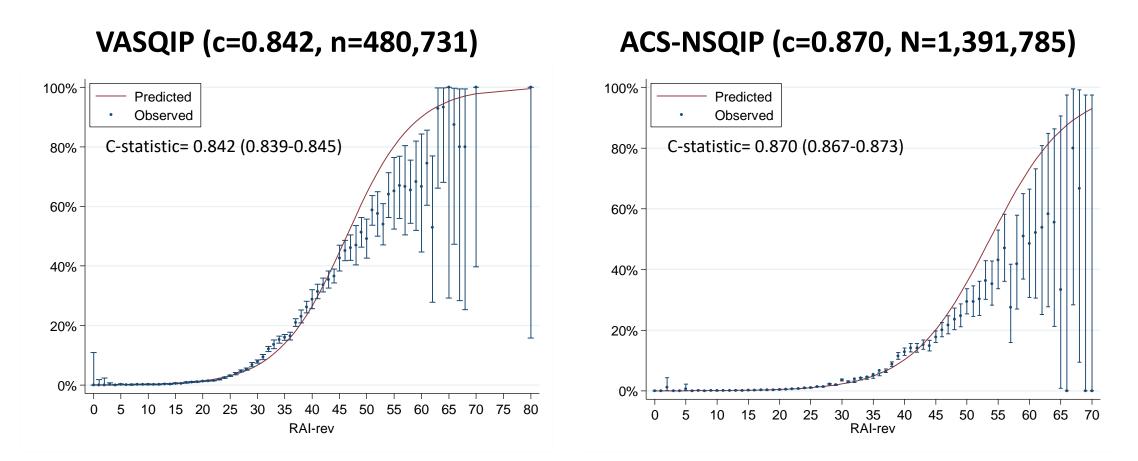
The patient's RAI score is 54.

vha.med.va.gov/surveys/index.php?s= 🔎 🗕 🖒 🔒 🕏

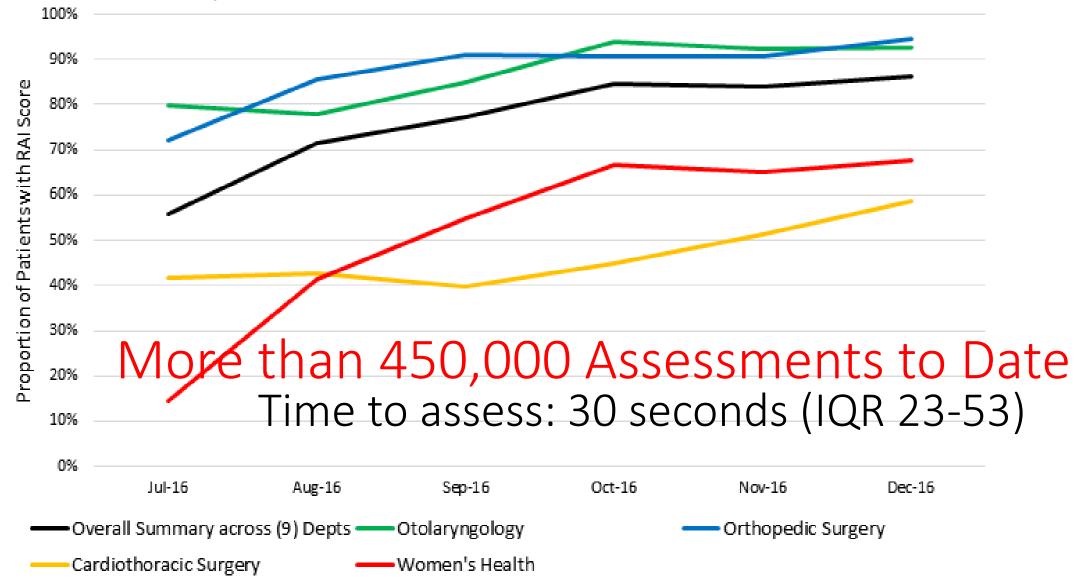

🗿 Free Hotmail 🕱 NIHMS — Login Options 🗿 Web Slice Gallery 👻 🗿 Suggested Sites 👻

Scores ≥37 indicate significant frailty and should be discussed with the surgeon and patient

ME


Risk Analysis Index (RAI)

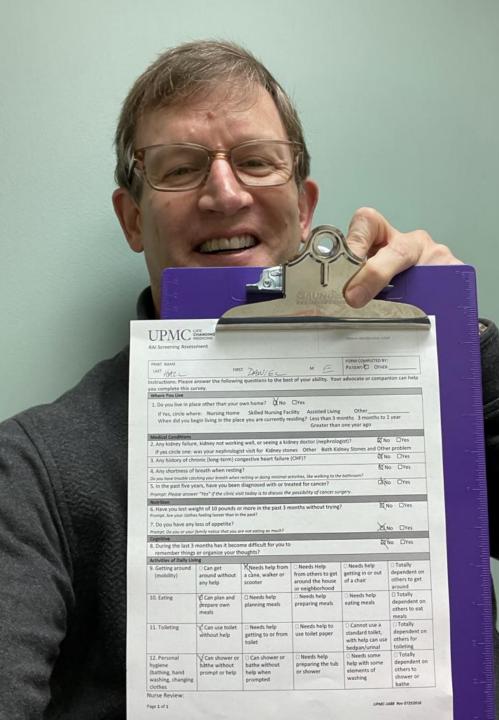
- 14 Variables; weighted scale
- Grouped into 4 categories with increasing frailty severity Robust: 0-29 Average: 30-36 Frail: 37-44 Very Frail: ≥ 45
- Most thoroughly validated measure of *surgical* frailty, and only shown feasible for point-of-care testing¹


¹Arya et al. Ann Surgery 2019; Shah, et al, J Am Geriatrics 2020; Varley, et al, Ann Surgery 2020

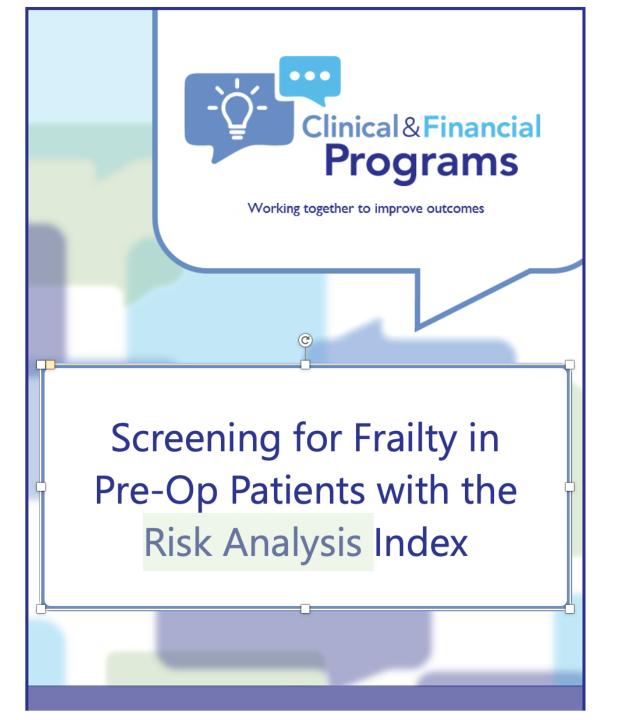
RAI Validation in Veterans and Private Sector VASQIP & ACS-NSQIP

Arya, S. et al. Annals of Surgery doi 10.1097/SLA.00000000003276 (2019, March 23).

RAI Implementation at UPMC: Feasible

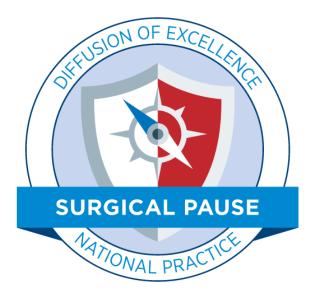


Varley PR, et al Ann Surg. 2020 10.1097/SLA.0000000000003808


Including me! 5/20/2021

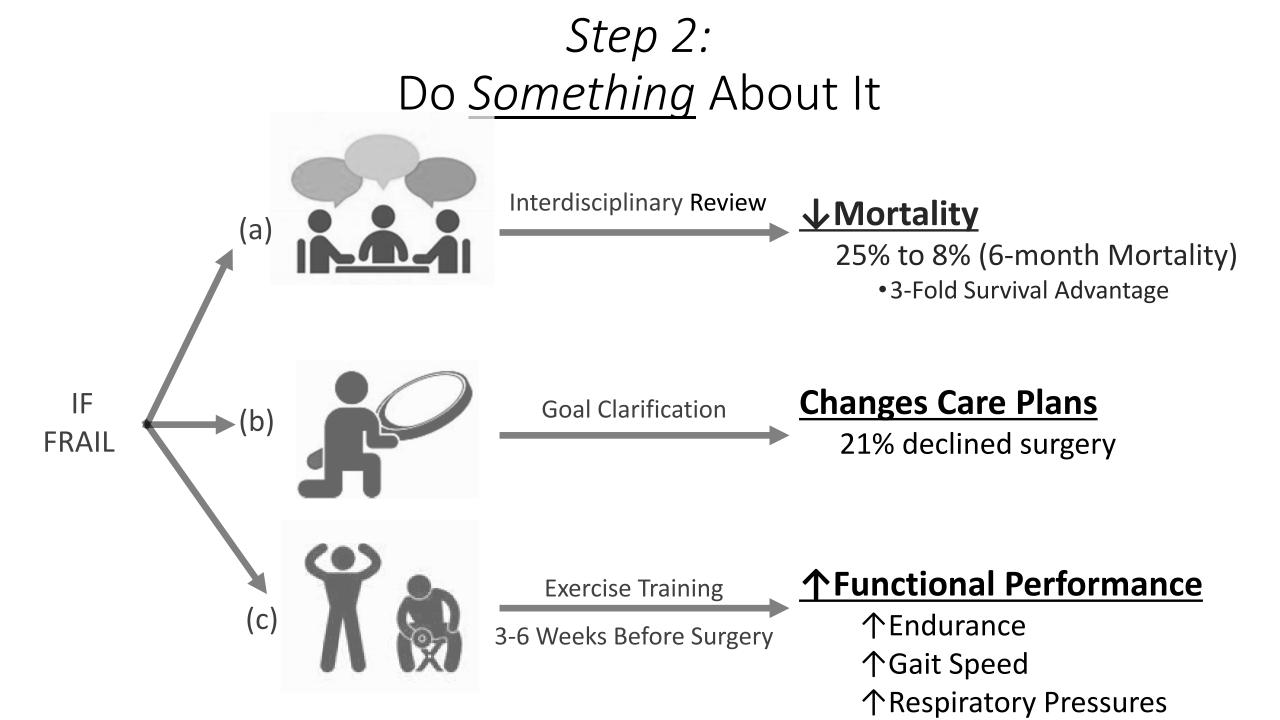
A torn achilles made me less mobile than the day before...

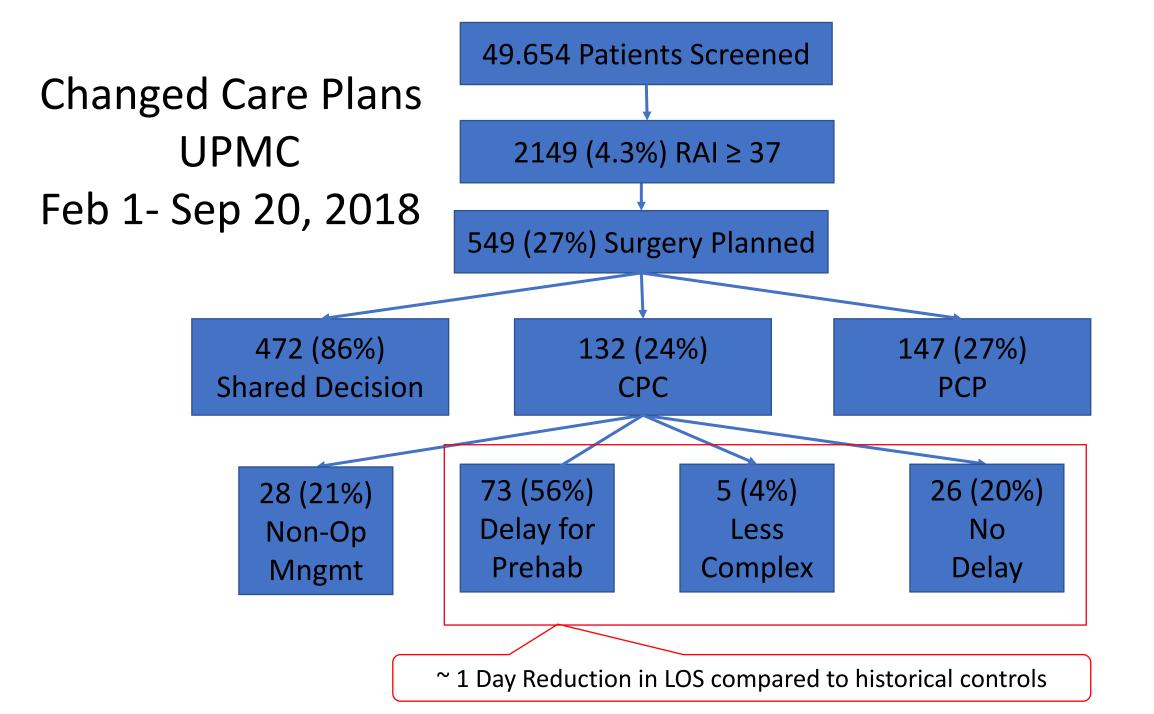
but not frail yet.



Now available in Epic as a Clinical Program

Implementation Map




- Total of 50 engaged sites across ALL 18 VISNs
 - 28 Sites are active
 - 16 sites are considered fully implemented
 - 12 sites are nearing full implementation within the next few months.
- **FY22 Goal:**
 - 35 fully implemented sites across 18 VISNs

Step 1: Assess Frailty

Threshold for Action: Revised RAI \geq 37

- Riskiest 10% of population;
- At least twice the average 6-month mortality
 - 12% vs 6%
- Twice the rate of 30- and 90-day readmission
 - 22% vs 12%
- Twice the rate of long term ICU stay \geq 5 days
 - 6% vs. 3%
- Modest positive predictive value: 19%
- Strong negative predictive value: 96%
 - <u>Safe to operate</u> on patients with Revised RAI<37 (e.g. most patients)

Baseline to Day of Surgery

Significant Changes in Physical Performance

Measure	Baseline Mean (SD)	Day of Surgery Mean (SD)	Mean Difference (Standard Error)	P value	Minimum Clinically Important Difference
Extended TUG (seconds)	N=42 21.9 (12.5)	N=33 17.8 (4.6)	-2.3 (0.5)	<0.001	2.4s
Gait Speed (meters/second)	N=42 1.11 (0.32)	N=33 1.24 (0.30)	+0.1 (0.03)	0.002	0.1m/s
5 Chair Rise (seconds)	N=38 13.3 (5.7)	N=33 11.8 (4.6)	-1.6 (0.6)	0.007	2.3s
Six Minute Walk Test (meters)	N=40 348.6 (109.1)	N=30 380.6 (102.2)	+29.3 (15.6)	0.060	30m
SPPB Score	N=41 10.2 (1.9)	N=33 10.8 (1.1)	+0.6 (0.3)	0.068	1 unit

Implementation Nuts and Bolts

Two Step Process

- Step 1: Measure Frailty
 - Don 't Triage the Triage Tool (Measure on Everyone)
 - <u>Must</u> measure frailty before booking surgery date

Two Step Process

- Step 2: Do Something About It
 - Surgeon champion review
 - Interdisciplinary Review Panel
 - Surgery, Anesthesia, Palliative Care, Geriatrics, IMPACT Clinic
 - Real time or Time Asynchronous
 - Goal Clarification & Shared Decision Making
 - "Not a candidate" is NOT shared decision making
 - Avoid mental model of "fixing it"
 - I'm worried that no matter what we do life will never be the same for you
 - Best, Worst, and Most Likely Scenarios of at least 2 options
 - Who has this conversation?
 - Palliative care has skill but not necessarily the knowledge
 - Surgeons have the knowledge, but not necessarily the skill
 - Training options available

Lessons Learned

- It's not a math problem
 - Maximizing c-statistics is a distraction
 - No algorithm can determine what we should/should not do
 - RAI signals need to shift from fast to slow thinking
- It's about insight not technique
 - Shared decision making is *really* challenging, but it is the next frontier
 - Focusing on all-cause mortality creates opportunity
- The RAI works because it is simple, fast, and guides intervention
 - Phenotypical frailty may be more "pure" but not feasible for wide screening
 - Don't try to triage the triage tool
- Light, flexible touch—not too much structure
 - With a gentle nudge, surgeons step up
 - So adapt to your site's requirements
 - 1-2 hours/week of surgical champion

Many thanks to growing Research network.

- Health Systems with RAI Te
 - Atlanta-Emory/VA
 - Nashville-Vanderbilt
 - Phoenix-VA
 - Pittsburgh-UPMC/VA
 - Palo Alto-Stanford/VA
 - Omaha-UNMC/VA
 - Richmond-VA
 - Houston-Baylor/VA
 - Salt Lake-Utah/VA
 - San Antonio-UTH/VA
 - Indiana-University
 - University of New Mexico
- RAI Workgroup
 - Jason, Dan, Shipra
 - Ricky Shinall
 - Nader Massarweh
 - Rupen Shah
- VQI workgroup
 - Philip Goodney
 - Matthew Mell
 - Benjamin Brooke
 - Larry Kraiss

- Team Hall/UPMC/VAPHS
 - Ada Youk
 - Andrew Bilderback
 - Jacob Hodges
 - Jeff Borrebach
 - Mary K Wisniewski
 - Tami Minnier
 - Steve Shapiro
 - Mark Wilson
 - Joel Nelson
 - Bob Arnold
 - Johanna Bellon
 - Dan Forman
 - Kelly Allsup
 - Jonas Johnson
 - Stephen Esper
 - Jenn Holder-Murray

- Team Arya/Stanford/ VA Palo Alto/ VA Atlanta/ Emory
 - Sebastian Perez
 - Amber Trickey
 - Rui Chen
 - Kelly Blum
 - Elizabeth George
 - Kara Rothenberg
 - Jordan Stern
 - Arden Morris
 - Mary Hawn
 - Ronald Dalman
 - Paula Tucker
 - Luke Brewster
 - Theodore Johnson
 - Jason Hockenberry

- Team Johanning/ UNMC/NWICHS/ VISN 23
 - Tom Lynch
 - Kendra Schmid
 - Kaeli Samson
 - Georgia Lyles
 - Krishna Chaitanya
 - Karen Taylor
 - Tom Edes
 - Richard Allman
 - Scott Shreve
 - Jahnigen Scholars
 - Health and Aging Policy Fellowship

Questions?

hallde@upmc.edu

SURGICAL PAUSE

....Including Cost (Reality Check)

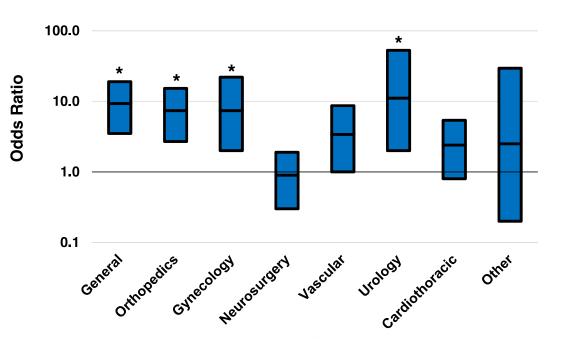
-				
Variable	Nonfrail (0 or 1 Trait) (n = 24)′	Prefrail (2 or 3 Traits) (n = 13)	Frail (≥4 Traits) (n = 23)	Р
Hospital cost	\$27,731 ± \$15,693	\$29,776 ± \$12,782	$76,363 \pm 48,595$	<.001
Posthospital 6-mo cost	\$6,472 ± \$7,523	\$21,874 ± \$13,018	\$34,339 ± \$31,756	<.001
Total 6-mo postoperative cost	\$33,453 ± \$17,870	$$51,650 \pm $21,569$	\$110,702 ± \$67,705	<.001
Medicare DRG payment	\$23,142 ± \$6,751	\$25,425 ± \$5,234	\$27,399 ± \$3,148	.028
Baseline health	802,872		2,530,000	
Aae (v)	70 ± 5	75 ± 6	81 ± 6	<.001
Postdischarge variables				
Discharge				
institutionalization	0% (0)	15% (2)	59% (13)*	<.001
30-d readmission	4% (1)	15% (2)	32% (7)*	.044

Robinson TN, et al., Am J Surg. 2011;202(5):511-514.

RAI & Cost: Direct and Net Hospital Costs

Univariate Analysis:

↑length of stay (0.8 v. 2.1 days)
↑ total cost (\$6,934 v. \$13,319)
↓ net hospital income (\$5,447 v. \$3,129)

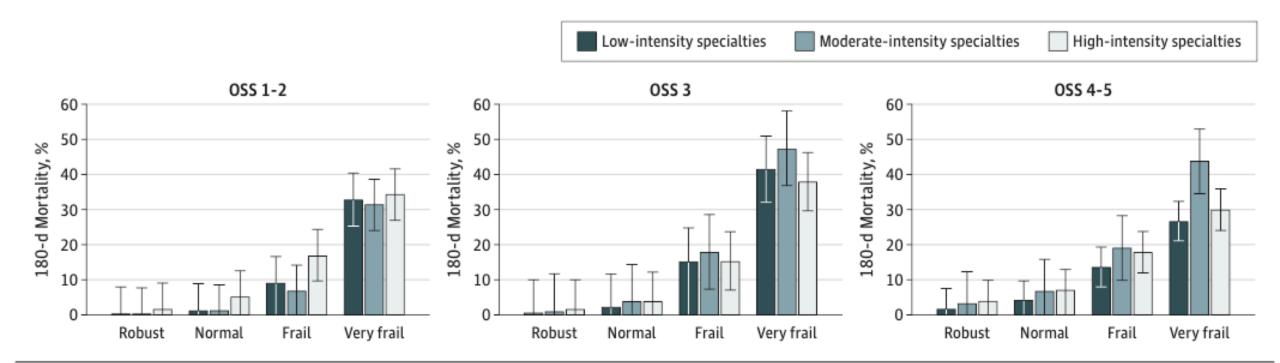

Multivariate analysis:

↑ direct cost (OR 2.2)

- ↑ indirect cost (OR 1.9)
- \uparrow total cost (OR 2.2)
- \downarrow net income (OR 0.8)

(all p<0.001)

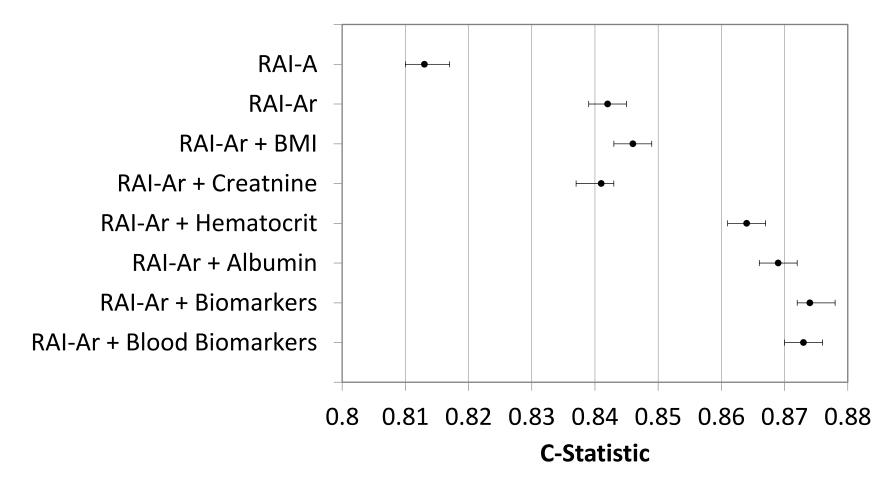
Wilkes JG, et al. J Am Coll Surg. 2019;228(6):861-870.



Total cost odds ratio (with 95% CI, as demonstrated by box plot) on logarithmic scale. Calculated as odds of significantly frail patients costing greater than the median cost for inpatient elective operations stratified by service and Risk Analysis Index with unfrail patients (not depicted) as the reference value (*p < 0.05).

ι	JPMC Charges normalized to 'Normal	30-36'	total c	harges	
		Robust	Normal 30	Frail 37 to	Very frail
	Category	≤29	to 36	44	≥45
	Inpatient Surgical DRG	0.34	0.34	0.35	0.34
Ļ	ER to Inpatient Surgical DRG	0.03	0.05	0.07	0.08
en	Inpatient Medical DRG, General, Specialist and Observation	0.06	0.11	0.14	0.19
Inpatient	Inpatient Rehabilitation	0.00	0.00	0.01	0.01
du	Inpatient Behavioral Health	0.00	0.00	0.00	0.00
_	Ambulance from Facility to Facility	0.00	0.00	0.00	0.00
	Subtotal Inpatient Charges	0.43	0.51	0.57	0.62
	Outpatient Surgery	0.04	0.07	0.05	0.06
Ļ	Outpatient Hospital and Specialized Facility	0.09	0.28	0.21	0.24
Outpatient	Outpatient Office, PCP and Other	0.01	0.02	0.02	0.03
ati	Therapy Service (Is this like Outpatient Rehab/PT?)	0.01	0.00	0.00	0.00
tp:	Outpatient Behavioral Health	0.00	0.00	0.00	0.00
nC	ER Discharged to Home	0.01	0.01	0.01	0.01
Ŭ	Observation, from ER or Office	0.01	0.01	0.01	0.01
	Subtotal Outpatient Charges	0.17	0.39	0.32	0.36
te t	Nursing, Skilled and General	0.01	0.02	0.05	0.07
Post Acute	Home Care	0.03	0.05	0.06	0.07
Ъ Ч	Subtotal Post Acute Charges	0.04	0.08	0.11	0.14
e L	Other (e.g., Lab, OB/GYN, Maternity, Urgent Care)	0.00	0.01	0.01	0.00
Other	Shock Claims	0.04	0.01	0.05	0.04
0	Subtotal Other Charges	0.04	0.02	0.05	0.04
	Total Charge	0.69	1.00	1.05	1.17

OK, but...it's only for those (other) surgeons: RAI, Operative Stress, Mortality and <u>Specialty</u>


Figure 2. Veterans Affairs Surgical Quality Improvement Program (VASQIP) 180-Day Mortality Following Surgery in 9 Noncardiac Surgical Specialties Stratified by Frailty Status (Risk Analysis Index) and Operative Stress Score (OSS)

Specialties were categorized by the percentage of low-stress (OSS 1 and 2) procedures performed. Frail and very frail patients experienced high mortality rates following low- and moderate-stress procedures in all specialties. Error bars represent the SEs.

George EL, et al., JAMA Surg. 2020:e205152. 10.1001/jamasurg.2020.5152

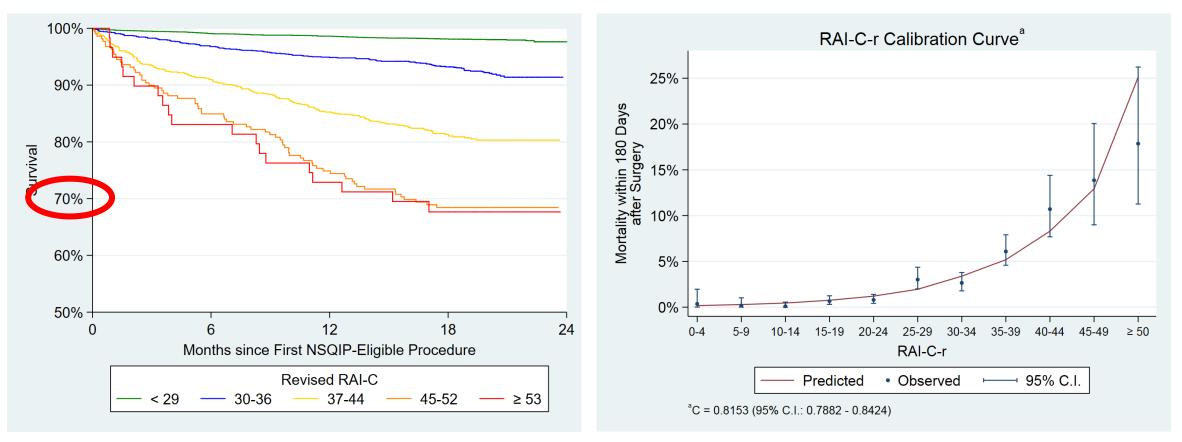
"But the RAI is too subjective...." Do "objective" biomarkers help?

Pandalai, et al, ACS Clinical Congress, 2020

Maybe, but is the juice worth the squeeze?

RAI **RAI+Hematocrit** RAI-A-r Recalibrated Score RAIA-r Recalibrated Score w/ Hct **Observed Mortality Predicted Mortality Observed Mortality** Predicted Mortality 95% Confidence Interval 95% CI

Pandalai, et al, ACS Clinical Congress, 2020

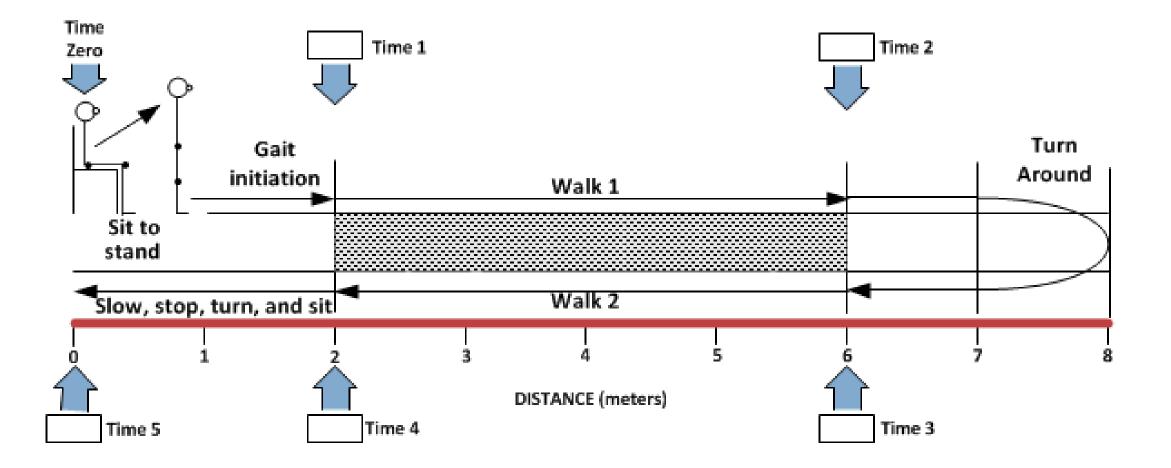

RAI Survey Implementation at UPMC

Discrimination

C= 0.815 (95% CI 0.788-0.842)

Calibration

95.6% of predicted deaths within 95% CI of observed deaths


Varley PR, et al Ann Surg. 2020 10.1097/SLA.000000000003808.

Multi-Mode Frailty Assessment

• 2-step process

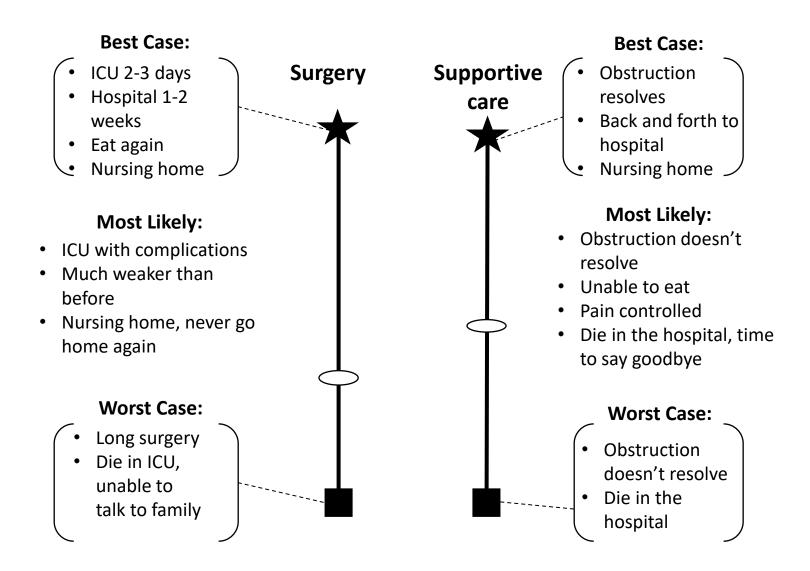
- Screen with RAI (30-seconds)
- Physical function measures for the potentially frail (RAI≥37)
- Grip Strength
- Gait Speed
- TUG
- MiniCog
- Additional History (medication, admission, etc)

Clinic Runway

eTUG	50 s	Abnormal: > 30 s				
Walking Speed	0.4 m/s	Abnormal: ≤ 0.65 m/s*				
Average Grip Strength	24.5 kg	Abnormal: ≤ 32 kg**				
RAI (without cancer)	60	0-15:Robust 16-25: Pre-frail 26-35:Frail 36+:Severly Frail				
RAI (with cancer)	68	0-15:Robust 16-25: Pre-frail 26-35:Frail 36+:Severly Frail				
Edmonton FRAIL	13	0-5: Not Frail 6-7: Vulnerable 8-9: Mild Frailty 10-11: Moderate Frailty 12+: Severe Frailty				
Fried Frailty	5	0: Not Frail 1-2: Pre-frail 3+: Frail				
Clinical Frail Scale	6-Moderately Frail	1: Very Fit 2: Well 3:Managing Well 4: Vulnerable 5: Mildly Frail 6: Moderately Frail 7: Severely Frail 8: Very Severely Frail 9: Terminally III				
Mini-Cog	1	0: Negative for Cognitive Impairment 1: Positive for Cognitive Impairment				
-	Cutoff adjusted for sex and height *Cutoff adjusted for sex and BMI					

Goal Clarification Best Case Worst Case Scenario Planning

- Developed by and for surgeons for preoperative conversations
- Presents a choice between two options.
- Uses story telling to describe what is likely under the best, worst and most likely scenarios.
- Sparks a conversation about patient goals, values, fears and aspirations.
- Memorialized in a graphic aid. (Check out the <u>white board video</u>)
- Requires substantial communication skills.



6 Steps for BC/WC

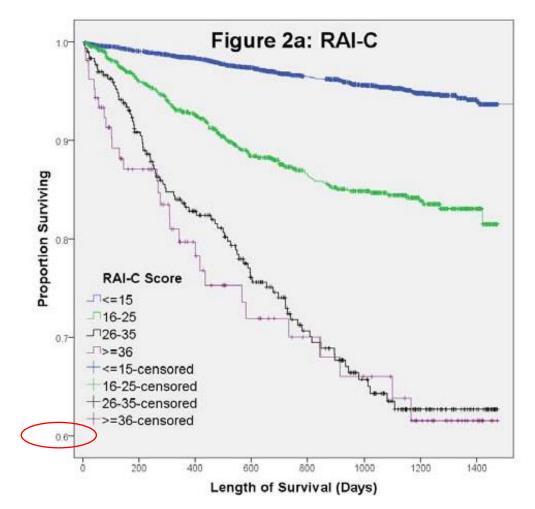
- Recognize that bad/serious news needs to be broken
- Create a visual aid
 - Surgery vs. Non Op Management
 - Treatment A vs. Treatment B
 - Gets you clear in your own head
 - Simplifies language
 - Physical deposit for family
- Break bad news
- Tell stories about best, worst and most likely scenarios
 - Why stories: Scenario Planning
- Elicit preferences: What is important to you now?
- Make a recommendation

UPMC Adaptation

- Gathering information on operative and non-operative options and outcomes (e.g., "cat herding"
- Making a recommendation to the surgeon rather than the patient

Older Woman with Cervical Spine Fracture

• Mrs. Goldstein is an 83 y/o woman with CAD with prior CABG, hypertension, COPD, CKD, and prior CVA who tripped and fell down a flight of stairs at home. She was brought to the ED by ambulance and found to have no feeling or movement in her legs and arms. Imaging reveals an unstable cervical spine fracture at C5. Prior to her fall she had been in usual health. She denies angina, palpitations, or syncope, and has some mild dyspnea on exertion. She lives with her husband, and was otherwise independent in her ADL's and IADL's. Husband is 7 years her junior and spry.

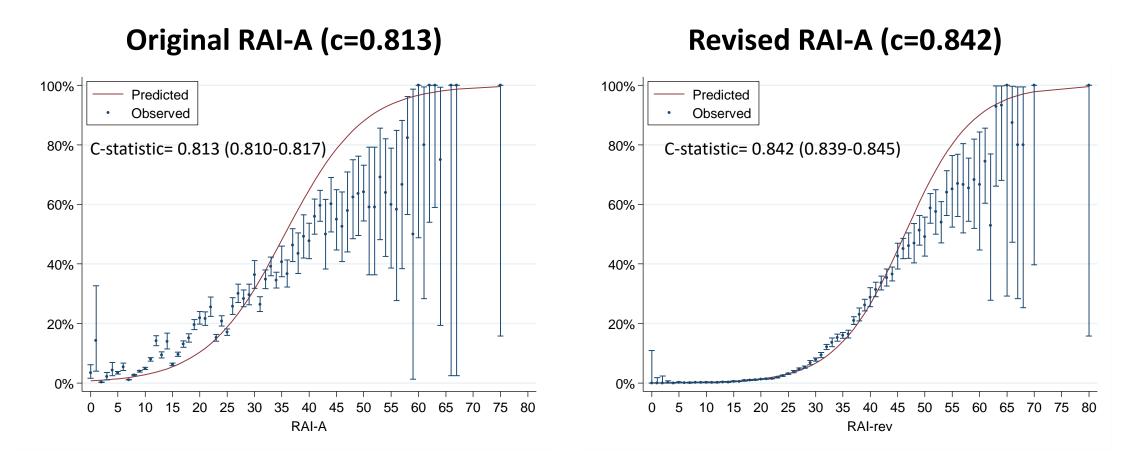

• Exam: Awake, alert, fully oriented, no acute distress. No elevated JVP. Lungs clear without use of accessory muscles. Cardiac rhythm regular, no murmurs. No leg edema. Neurologic exam consistent with C5 quadriplegia.

- VS: T 36.4 BP 128/76 P 92 RR 20 O2 sat 98% on 2 lpm
- Labs: CBC normal, BMP with baseline creatinine of 2.5
- EKG: Sinus tachycardia, no ischemic changes
- CXR: clear, no acute infiltrates

	With Surgery	Without Surgery
Best Case	 Long procedure in OR to stabilize cervical spine Post-op stay in ICU Evaluation by PM&R with transfer to the inpatient spinal cord rehab program Eventual return home with adaptations to live with quadriplegia Lives another 12-24 months with constant assistance from husband and visiting nurses. 	 Avoidance of surgical risk Focus on comfort managed by hospice Family can remain near C-collar removed after 6 weeks, except during transfers. Likely pulmonary complications Lives 4-12 months before terminal pneumonia
Worst Case	 Surgical complications requiring one or more additional surgeries Prolonged ICU stay Failure to wean from ventilator requiring tracheostomy Post-op pneumonia Complications of quadriplegia including skin breakdown, DVT Death in the ICU in 2-4 weeks 	 Pain requiring narcotics, possibly sedating Phantom pain; spasms. Never goes home because require inpatient hospice Early pneumonia or mucous plugging Death in 1-3 weeks
Most Likely Case	 Prolonged but technically successful stabilization surgery Multiple days in ICU Likely respiratory complications Prolonged hospital stay Extended rehab in a skilled setting Permanent placement in SNF Lives another 6-18 months 	 Successful ability to control symptoms of pain and shortness of breath Fracture remains unstable requiring C-collar most of the time. Home hospice Survives 2-6 months.

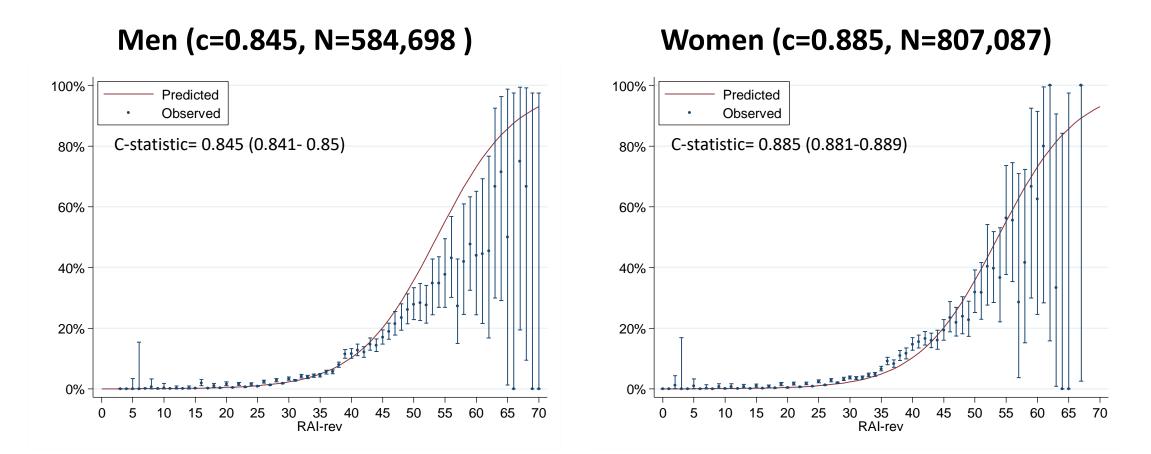
Risk Analysis Index (RAI)—Initial Validation

- Administrative RAI (RAI-A)
 - Computed from VASQIP/NSQIP variables
 - Predicts 180 day mortality (C= 0.823)
- Clinical RAI (RAI-C)
 - 14 Item survey instrument
 - Administered by RN, APP or MD
 - Linear scale from 0-81
 - < 2 minutes to complete
 - > 10,000 measurements from 2011-2014.
 - Predicts 180 day mortality (C= 0.772)
- Correlation RAI-A:RAI-C=0.547



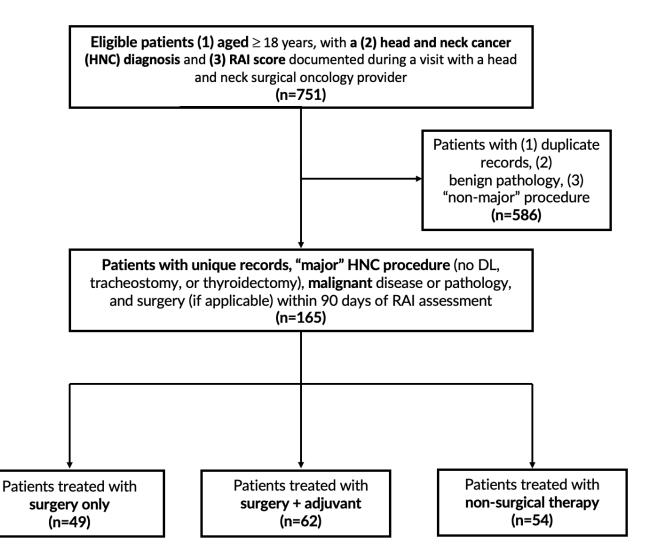
Hall, DE. et al. JAMA Surgery 152(2) doi:10.1001/jamasurg.2016.4202 (Nov 23).

RAI seems to work, but.....

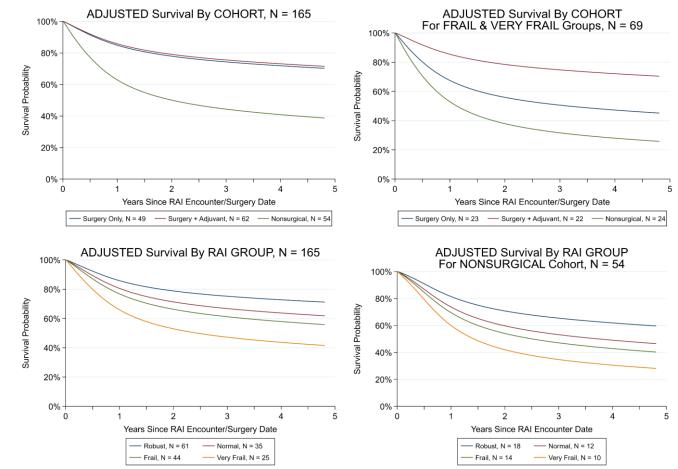

- Scoring system never calibrated in surgical population
- Validation limited to a single VA hospital
 - What about other VA hospitals
 - What about non-VA hospitals
 - What about women?
- Questions remain:
 - Would the "objectivity" of biomarkers help?
 - What procedures matter most (should everyone be screened)?
 - Are some specialties exempt?

RAI-A Validation in Veteran Patients (VASQIP) (N=480,731)

Arya, S. et al. Annals of Surgery doi 10.1097/SLA.00000000003276 (2019, March 23).

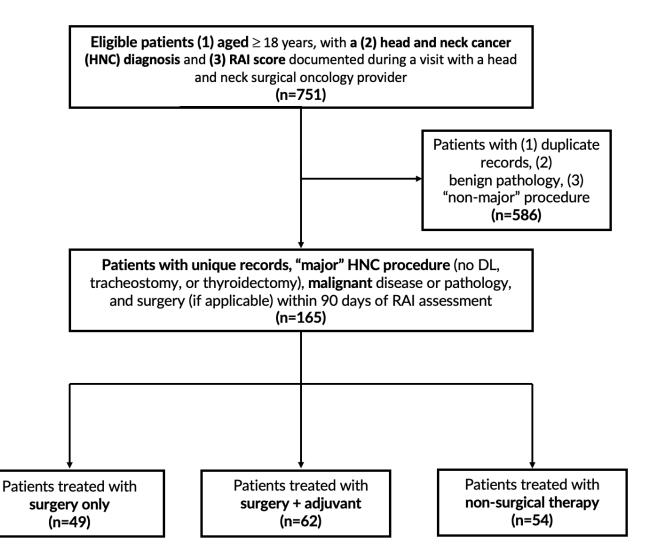

RAI-A Validation in Men and Women ACS-NSQIP (N=1,391,785)

Arya, S. et al. Annals of Surgery doi 10.1097/SLA.00000000003276 (2019, March 23).

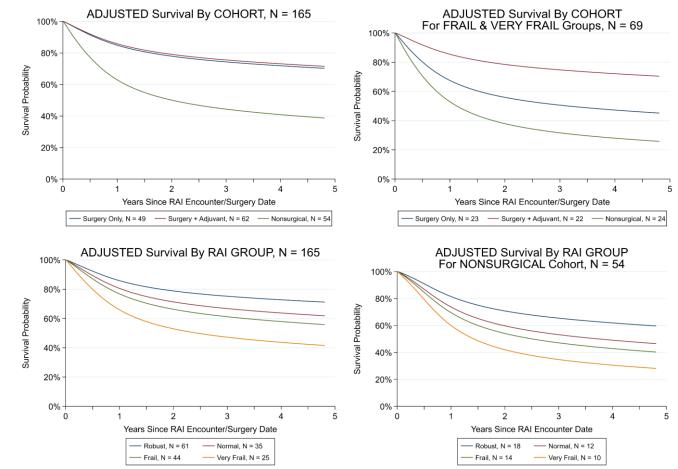

The impact of frailty on mortality in non-surgical head and neck cancer treatment: Shifting the paradigm.

- <u>Objective</u>: Compare survival treated with surgical and non-surgical management, stratified by frailty using RAI.
- <u>Cohort</u>: 165 patients with malignant disease & RAI
 - 59 Major Surgery
 - 62 Major Surgery + Adjuvant
 - 54 Non-surgical therapy

Mady LJ, et al., *Oral Oncol*. Mar 2022;126:105766. 10.1016/j.oraloncology.2022.105766


- <u>Methods</u>: Multivariable cox proportional hazard models
 - RAI, stage, tumor site, tumor type
- <u>Results:</u> ↓Survival Non-Surgical
 - Overall (N=165)
 - Among the Frail (69)
 - HR 2.5 (1.19,5.23) surgery
 - HR 3.91 (1.94,7.89) multimodal
 - \downarrow Survival with \uparrow Frailty
- <u>Conclusions</u>:
 - Non-surgical management is worse than surgical management across all levels of frailty
 - Challenge assumption of "too frail for surgery"
 - RCTs needed to clarify treatment of frail patients

Mady LJ, et al., *Oral Oncol*. Mar 2022;126:105766. 10.1016/j.oraloncology.2022.105766


The impact of frailty on mortality in non-surgical head and neck cancer treatment: Shifting the paradigm.

- <u>Objective</u>: Compare survival treated with surgical and non-surgical management, stratified by frailty using RAI.
- <u>Cohort</u>: 165 patients with malignant disease & RAI
 - 59 Major Surgery
 - 62 Major Surgery + Adjuvant
 - 54 Non-surgical therapy

Mady LJ, et al., *Oral Oncol*. Mar 2022;126:105766. 10.1016/j.oraloncology.2022.105766

- <u>Methods</u>: Multivariable cox proportional hazard models
 - RAI, stage, tumor site, tumor type
- <u>Results:</u> ↓Survival Non-Surgical
 - Overall (N=165)
 - Among the Frail (69)
 - HR 2.5 (1.19,5.23) surgery
 - HR 3.91 (1.94,7.89) multimodal
 - \downarrow Survival with \uparrow Frailty
- <u>Conclusions</u>:
 - Non-surgical management is worse than surgical management across all levels of frailty
 - Challenge assumption of "too frail for surgery"
 - RCTs needed to clarify treatment of frail patients

Mady LJ, et al., *Oral Oncol*. Mar 2022;126:105766. 10.1016/j.oraloncology.2022.105766

- <u>Methods</u>: Univariate and multivariable linear and logistic regression
 - RAI, stage, tumor site, tumor type
- <u>Results:</u>
 - Univariate 个Flourishing with age, normal diet, employment, & income
 - \downarrow Flourishing associated with
 - 个Depression
 - **↑**Anxiety
 - ↑Swallowing Dysfunction
 - ↑Neck Disability
 - 个Insomnia

		Flourishing Index (5	Domains)	Secure Flourishing Index (6 Domains)	
	Mean ± SD	Coefficient (95% CI)	p value ^a	Coefficient (95% CI)	p value ^a
Depression (PHQ8)	7.4 ± 6.0	-2.13 (-2.59, -1.66)	<0.001	-2.64 (-3.20, -2.08)	< 0.001
Anxiety (GAD7)	4.8 ± 6.2	-1.76 (-2.25, -1.27)	< 0.001	-2.22 (-2.81, -1.63)	< 0.001
Swallowing (EAT10)	15.4 ± 11.8	-0.61 (-0.86, -0.36)	< 0.001	-0.76 (-1.07, -0.45)	< 0.001
Neck Disability (NDI)	10.2 ± 9.3	-0.94 (-1.25, -0.63)	< 0.001	-1.20 (-1.57, -0.83)	< 0.001
Insomnia (ISI)	7.8 ± 7.1	-1.08 (-1.50, -0.66)	< 0.001	-1.35 (-1.86, -0.84)	< 0.001

• Results (continued)

 Interesting and meaningful patterns in sub-domains of flourishing

• <u>Conclusions</u>:

- Common late-term side effects of HNC treatment associated with ↓Flourishing
- Further data of this kind may inform treatment decisions consistent with patients' goals

	Domain 1 (Happiness and Life Satisfaction)		Domain 2 (Ment Physical Health			ain 3 (Meaning and ose)	
	Coefficient (95% CI)	<i>p</i> value ^a	Coefficient (95% CI)	P value ^a	Coefficient (95% CI)	<i>p</i> value ^a	
Depression (PHQ8)	-0.28 (-0.34, -0.23)	<0.001	-0.31 (-0.37, -0.26)	<0.001	-0.20 (-0.26, -0.14)	<0.001	
Anxiety (GAD7)	-0.24 (-0.31, -0.19)	<0.001	-0.26 (-0.32, -0.21)	<0.001	-0.17 (-0.23, -0.11)	<0.001	
Swallowing (EAT10)	-0.085 (-0.12, -0.05)	<0.001	-0.11 (-0.14, -0.07)	<0.001	-0.050 (-0.08, -0.02)	0.00135	
Neck Disability (NDI)	-0.14 (-0.17, -0.1)	<0.001	-0.15 (-0.19, -0.11)	<0.001	-0.080 (-0.12, -0.04)	<0.001	
Insomnia (ISI)	-0.16 (-0.21, -0.11)	<0.001	-0.16 (-0.22, -0.12)	<0.001	-0.085 (-0.14, -0.03)	<0.001	
	Domain 4 (Charac Virtue)	eter and	Domain 5 (Close Social Relationships)		Domain 6 (Financial and Material Stability)		
	Coefficient (95% CI)	p value ^a	Coefficient (95% CI)	<i>p</i> value ^a	Coefficient (95% CI)	<i>p</i> value ^a	
Depression (PHQ8)	-0.090 (-0.15, -0.03)	0.00372	-0.19 (-0.25, -0.12)	<0.001	-0.26 (-0.34, -0.18)	<0.001	
Anxiety (GAD7)	-0.065 (-0.12, -0.01)	0.0325	-0.15 (-0.21, -0.08)	<0.001	-0.23 (-0.31, -0.15)	<0.001	
Swallowing (EAT10)	-0.033 (-0.06, -0.01)	0.0177	-0.035 (-0.07, 0.00)	0.0266	-0.075 (-0.12, -0.04)	<0.001	
Neck Disability (NDI)	-0.033 (-0.07, 0.00)	0.0692	-0.075 (-0.12, -0.04)	<0.001	-0.13 (-0.18, -0.08)	<0.001	
Insomnia (ISI)	-0.036 (-0.08,	0.124	-0.10 (-0.15,	< 0.001	-0.14 (-0.21,	< 0.001	

That's our story, and then there is peer review:

George EL, Hall DE, Youk A, Chen R, Kashikar A, Trickey AW, Varley PR, Shireman PK, Shinall MC, Massarweh NN, Johanning JM, Arya S. Patient frailty and postoperative mortality after noncardiac surgery—does specialty matter? JAMA Surgery (in press).

- Agarwal N, Goldschmidt E, Taylor T, Souvik R, Altieri-Dunn S, Bilderback AL, Friedlander RM, Kanter AS, Okonkwo DO, Gerszten PC, Hamilton DK, Hall DE. Impact of Frailty on Outcomes following Spine Surgery: A Prospective Cohort Analysis of 668 Patients. *Neurosurgery* (in press).
- Shinall, M. C., Jr, Youk, A., Massarweh, N. N., Shireman, P. K., Arya, S., George, E. L., & Hall, DE. (2020). Association of Preoperative Frailty and Operative Stress With Mortality After Elective vs Emergency Surgery. JAMA Network Open, 3(7), e2010358-e2010358. doi:10.1001/jamanetworkopen.2020.10358
- Shah R, Borrebach JD, Hodges JC, Varley PR, Wisniewski MK, Shinall MC, Jr., Arya S, Johnson J, Nelson JB, Youk A, Massarweh NN, Johanning JM, Hall DE. Validation of the Risk Analysis Index for Evaluating Frailty in Ambulatory Patients. *J Am Geriatr Soc.* 2020;68(8):1818-1824.
- Varley PR, Borrebach JD, Arya S, Massarweh NN, Bilderback AL, Wisniewski MK, Nelson JB, Johnson JT, Johanning JM, Hall DE. Clinical Utility of the Risk Analysis Index as a Prospective Frailty Screening Tool within a Multi-practice, Multi-hospital Integrated Healthcare System. Ann Surg. 10.1097/SLA.00000000003808. 2020. PMID: 32118596.
- Rothenberg KA, George EL, Trickey AW, Barreto NB, Johnson TM, 2nd, Hall DE, Johanning JM, Arya S. Assessment of the Risk Analysis Index for Prediction of Mortality, Major Complications, and Length of Stay in Patients who Underwent Vascular Surgery. Ann Vasc Surg. 10.1016/j.avsg.2020.01.015. 2020. PMID: 31935435.
- Li Z, Habbous S, Thain J, Hall DE, Nagpal D, Bagur R, Kiaii B, John-Baptiste A. Cost-effectiveness analysis of frailty assessment in older patients undergoing coronary artery bypass grafting (CABG) surgery. Canadian Journal of Cardiology.

https://doi.org/10.1016/j.cjca.2019.09.025.2020;36(4):490-499. PMID: 32220386.

- Shinall MC, Jr, Arya S, Youk A, Varley P, Shah R, Massarweh NN, Shireman PK, Johanning JM, Brown AJ, Christie NA, Crist L, Curtin CM, Drolet BC, Dhupar R, Griffin J, Ibinson JW, Johnson JT, Kinney S, LaGrange C, Langerman A, Loyd GE, Mady LJ, Mott MP, Patri M, Siebler JC, Stimson CJ, Thorell WE, Vincent SA, Hall DE. Association of Preoperative Patient Frailty and Operative Stress With Postoperative Mortality. JAMA Surgery. 2019: e194620e194620. 10.1001/jamasurg.2019.4620. PMID: 31721994 PMCID: PMC6865246
- Rothenberg KA, Stern JR, George EL, Trickey AW, Morris AM, Hall DE, Johanning JM, Hawn MT, Arya S (2019). Association of Frailty and Postoperative Complications on Unplanned Readmissions Following Elective Outpatient Surgery. JAMA Network Open, 2(5) doi:10.1001/jamanetworkopen.2019.4330. PMID: 31125103. PMCID: PMC6632151
- Arya, S., Varley, P., Youk, A., Borrebach, J. A., Perez, S., Massarweh, N. N., . . . Hall, DE. (2019). Recalibration and External Validation of the Risk Analysis Index: A Surgical Frailty Assessment Tool. Ann Surg. doi:10.1097/SLA.00000000003276. PMID: 30907757.
- Shah, R., Attwood, K., Arya, S., Hall, DE, Johanning, J. M., Gabriel, E., . . . Massarweh, NN. (2018). Association of Frailty With Failure to Rescue After Low-Risk and High-Risk Inpatient Surgery. JAMA Surg, 153(5), e180214. doi:10.1001/jamasurg.2018.0214. PMID: 29562073

- Hall, DE., Arya, S., Schmid, K. K., Carlson, M. A., Lavedan, P., Bailey, T. L., Purviance, G., Bockman, T. Lynch, T.G., Johanning, J. M. Association of a Frailty Screening Initiative with post-operative survival at 30, 180 and 365 days. JAMA Surgery. doi: 10.1001/jamasurg.2016.4219 Epub Nov 30, 2016. PMID: 27902826. PMCID: PMC7180387.
- Hall, DE, Arya, S., Schmid, K. K., Blaser, C., Carlson, M. A., Bailey, T. L. Purviance, G., Bockman, T., Lynch, T.G., Johanning, J. M. Development and initial validation of the Risk Analysis Index (RAI) for measuring frailty in surgical populations. JAMA Surg 2017 152(2):175-182 doi: 10.1001/jamasurg.2016.4202 Epub Nov 23, 2016. PMID: 27893030. PMCID: PMC7140150.
- Ernst K, Hall DE, Lynch TJ, Schmid, KK, Seevers, G, Lavedan, P, Lynch, T, Johanning J. Surgical palliative care consultations over time in relation to system wide frailty-screening. JAMA Surgery. 2014: 149(11):1121-1126 DOI: 10.1001/jamasurg.2014.1393. PMID: 25207603. PMCID: PMC4603652.
- Codman, Hawthorne, and End Results of a Watched System.Johanning JM, Arya S.JAMA Surg. 2016 Dec 1;151(12):1165. doi: 10.1001/jamasurg.2016.2901.PMID: 27653007
- Preoperative Frailty Increases Risk of Nonhome Discharge after Elective Vascular Surgery in Home-Dwelling Patients.Arya S, Long CA, Brahmbhatt R, Shafii S, Brewster LP, Veeraswamy R, Johnson TM 2nd, Johanning JM.Ann Vasc Surg. 2016 Aug;35:19-29. doi: 10.1016/j.avsg.2016.01.052. Epub 2016 Jun 2.PMID: 27263810
- Frailty and Mortality After Noncardiac Surgery in Elderly Individuals: Metrics, Systems, and the Elephant.Johanning JM, Hall D, Arya S.JAMA Surg. 2016 Jun 1;151(6):545-6. doi: 10.1001/jamasurg.2015.5235.PMID: 26790639
- A frailty index identifies patients at high risk of mortality after tracheostomy. Johnson MS, Bailey TL, Schmid KK, Lydiatt WM, Johanning JM.Otolaryngol Head Neck Surg. 2014
- Apr;150(4):568-73. doi: 10.1177/0194599813519749. Epub 2014 Jan 16.PMID: 24436464 Preoperative frailty predicts postoperative complications and mortality in urology
- patients.Isharwal S, Johanning JM, Dwyer JG, Schimid KK, LaGrange CA.World J Urol. 2017 Jan;35(1):21-26. doi: 10.1007/s00345-016-1845-z. Epub 2016 May 12.PMID: 27172940
- Preoperative frailty Risk Analysis Index to stratify patients undergoing carotid endarterectomy.Melin AA, Schmid KK, Lynch TG, Pipinos II, Kappes S, Longo GM, Gupta PK, Johanning JM.J Vasc Surg. 2015 Mar;61(3):683-9. doi: 10.1016/j.jvs.2014.10.009. Epub 2014 Dec 9.PMID: 25499711
- Risk Prediction Tools to Improve Patient Selection for Carotid Endarterectomy Among Patients With Asymptomatic Carotid Stenosis.Keyhani S, Madden E, Cheng EM, Bravata DM, Halm E, Austin PC, Ghasemiesfe M, Abraham AS, Zhang AJ, Johanning JM.JAMA Surg. 2019 Apr 1;154(4):336-344. doi: 10.1001/jamasurg.2018.5119.
- Summary of the panel session at the 38th Annual Surgical Symposium of the Association of VA Surgeons: what is the big deal about frailty?Anaya DA, Johanning J, Spector SA, Katlic MR, Perrino AC, Feinleib J, Rosenthal RA.JAMA Surg. 2014 Nov;149(11):1191-7. doi: 10.1001/jamasurg.2014.2064.PMID: 25230137
- Assessing preoperative frailty utilizing validated geriatric mortality calculators and their association with postoperative hip fracture mortality risk.Dwyer JG, Reynoso JF, Seevers GA, Schmid KK, Muralidhar P, Konigsberg B, Lynch TG, Johanning JM.Geriatr Orthop Surg Rehabil. 2014 Sep;5(3):109-15. doi: 10.1177/2151458514537272.PMID: 25360340

The CPRS RAI Reminder Dialogue Template

National Release 9/13/21

.sk Analysis Index (RAI) Frail	ty Assessment Version 1 1			
•				
AILTY ASSESSMENT:				
The Risk Analysis Index (RA				
* Is a validated measure	or patient frailty s global physiological rese:			
	ilty are associated with adv			
	indicated by scores greater			
RAI score is: (Must be an integer value	e between 0 and 81)			
	e between 0 and 81)			
*				
Comment:				
Select this checkbox i	f patient indicated history	of cancer		
	<u>⊻</u> isit Info		Finish	Cancel
AILTY ASSESSMENT:				
RAI score is:				

Complimentary Initiatives

SAGE QUERI

<u>Safer Ageing through</u> <u>Geriatric-informed</u> <u>Evidence-based practices</u>

Pittsburgh, PAPhiladelphia, PA

•Lebanon, PA

•Wilkes-Barre, PA

•Wilmington, DE

PAUSE Trial

HSR&D IIR RCT

Frailty Screening followed by Multidisciplinary Clinic

• Palo Alto, CA

• Houston, TX

• Nashville, TN

HSR&D IIR

Improving Surgical Decision-Making by Measuring and Predicting Long-Term Loss of Independence after Surgery

GECDAC Partner Residential History File

