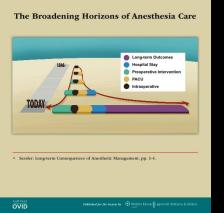


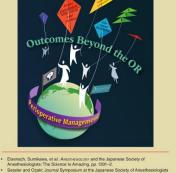
Department of OUTCOMES RESEARCH

Causes of Death

Death due to diseases of the heart (CDC)


Death due to malignant neoplasms (CDC)

Death within 30 days of admission for surgery (NIS)


Death due to cerebrovascular diseases (CDC)

Bartels, et al., 2013, Anesthesiology

Sessler and Ozaki: Journal Symposium at the Japanese Society of Anesthesiologists Annual Meeting: Outcomes Beyond the Operating Room, pp. 1313–5.

OVID

Improving Comparisons among Hospitals

- Orkin: Risk Stratification, Risk Adjustment, and Other Risks, no. 1001-3 Cohen and Hannenberg: Risk Stratification Index: An Important Advance in Comparing
- fealth Care Apples to Oranges, pp. 1004-6. Sessler et al.: Broadly Applicable Risk Stratifica Hospitalization and Mortality, pp. 1026–37. tion System for Predicting Duration of

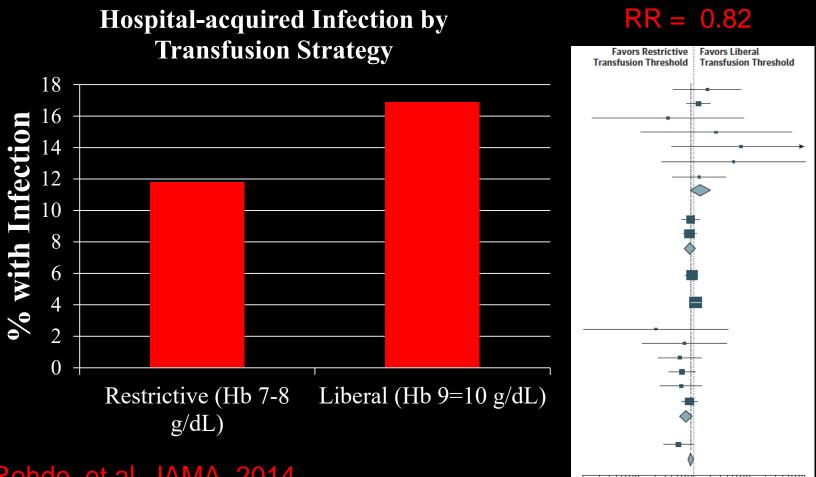
OVID

Wound Infection **Cancer Recurrence Red Cell Transfusion Glycemic Control Myocardial Infarction** Anesthetic Toxicity **Persistent Pain Delirium & POCD** Mortality

Long-term Outcomes of Anesthesia

Interventions to improve outcomes weeks, months, and years after surgery

Blood loss and transfusion
Red cell storage duration
Regional analgesia and cancer
Perioperative myocardial injury


www.OR.org

Blood Transfusion

- Transfusion can save livesAppropriate triggers unknown
- Associated with complications
 - Viral infection *not* major risk
 - Most commonly transmitted infection is babesiosis
- Potential risk mechanisms
 - Highly immunogenic
 - Nitric oxide depletion

Randomized Trials: Infection

0.01

0.1

1.0

Risk Ratio (95% CI)

10

100

Rohde, et al, JAMA, 2014

Randomized Trials: Cancer Recurrence

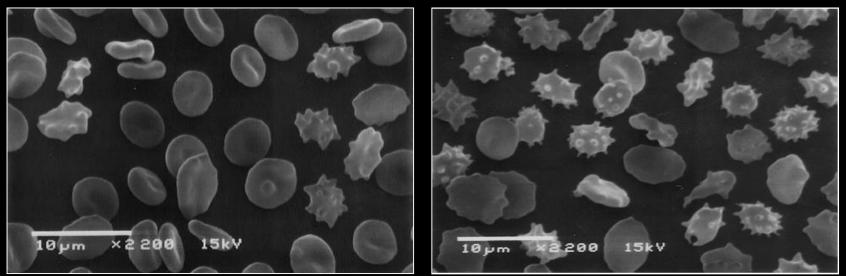
Study	Treatment	Control	Odds Ratio (Fixed)	Weight	Odds Ratio (Fixed)
	n/N	n/N	95% CI	(%)	95% CI
Frankish 1985	25/103	17/71		4.4	1.02 [0.50, 2.06]
Cheslyn-Curtis 1990	211/591	120/370		27.3	1.16 [0.88, 1.52]
Harder 1990	80/199	19/67		4.9	1.70 [0.93, 3.10]
Tartter 1992	44/110	50/229		5.6	2.39 [1.46, 3.91]
Sene 1993	51/221	34/158		8.8	1.09 [0.67, 1.79]
Sibbering 1994	42/121	45/145		7.7	1.18 [0.71, 1.97]
Heiss 1994	17/52	9/48	+	1.8	2.10 [0.83, 5.32]
Houbiers 1994	134/446	65/251		16.7	1.23 [0.87, 1.74]
Busch 1995	113/277	38/143		8.5	1.90 [1.22, 2.96]
Mynster 2001	123/315	68/209		14.3	1.33 [0.92, 1.92]
Total (95% CI)	2435	1691	•	100.0	1.36 [1.18, 1.56]
Total events: 840 (Treatment),	465 (Control)				
Test for heterogeneity chi-squa	are=11.94 df=9 p=0.22	I ² =24.6%			
Test for overall effect z=4.35	p=0.00001				
			0.1 0.2 0.5 1 2 5 10		
			Favours treatment Favours control		

RR=1.36, P=0.03

Amato et al, Cochrane 2006

Transfusion and Mortality

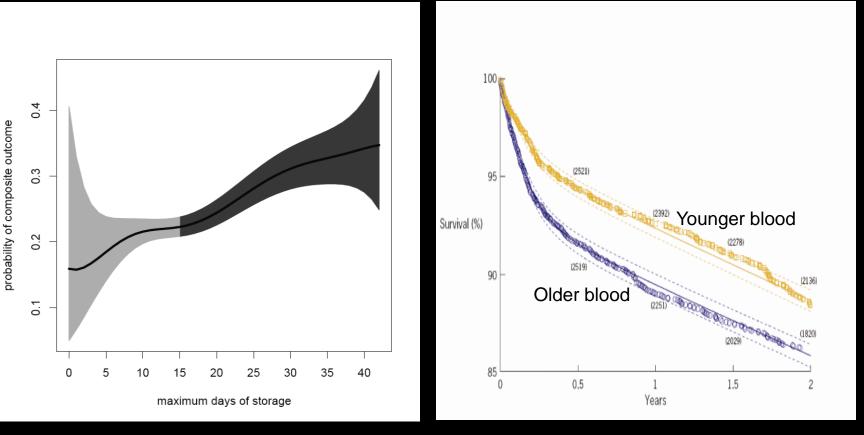
	30-d Mortality						
	Hemog	Lower Higher Hemoglobin Hemoglobin Threshold Threshold					
						Favors Lower	Favors Higher
_	Events,	Total,	Events,	Total,	Risk Ratio	Hemoglobin	Hemoglobin
Source	No.	No.	No.	No.	(95% Cl)	Threshold	Threshold
Blair, 1986	0	26	2	24	0.19 (0.01-3.67) —		
Bracey, 1999	3	215	6	222	0.52 (0.13-2.04)		
Bush, 1997	4	50	4	49	0.98 (0.26-3.70)		
Carson, 1998	1	42	1	42	1.00 (0.06-15.47)		
Carson, 2011	43	1009	52	1007	0.83 (0.56-1.22)	-	-
Foss, 2009	5	60	0	60	11.00 (0.62-194.63)	_	
Hajjar, 2010	15	249	13	253	1.17 (0.57-2.41)		-
Hebert, 1995	8	33	9	36	0.97 (0.42-2.22)		<u> </u>
Hebert, 1999	78	418	98	420	0.80 (0.61-1.04)		
Lacroix, 2007	14	320	14	317	0.99 (0.48-2.04)		<u> </u>
Lotke, 1999	0	62	0	65	NA		
Overall random effects model Heterogeneity: $l^2 = 0\%$		0.85 (0.70-1.03)	\diamond				
Test for overall ef		0			0.005	0.1 1	10 200
						Risk Ratio	o (95% Cl)


RR=0.85, P = 0.1

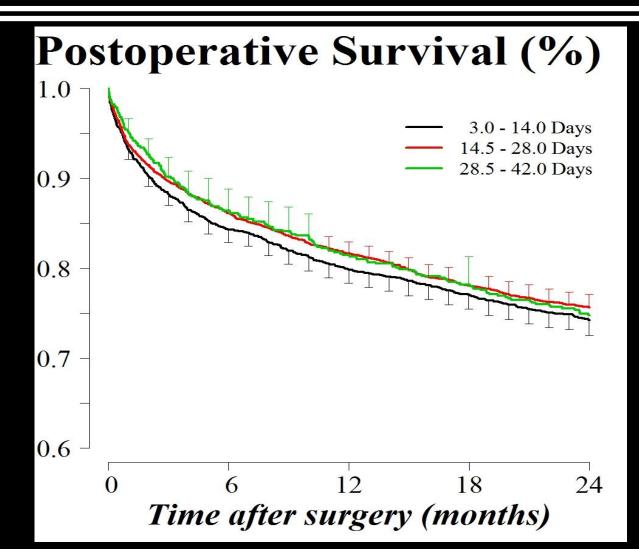
Carson, JAMA 2013

Stored Blood Degrades Over Time

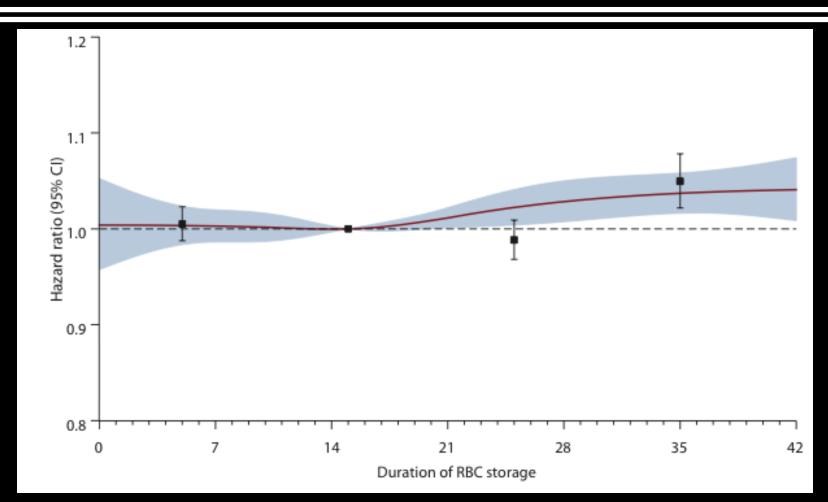
Younger blood


Older blood

Berezina, J Surg Res, 2002

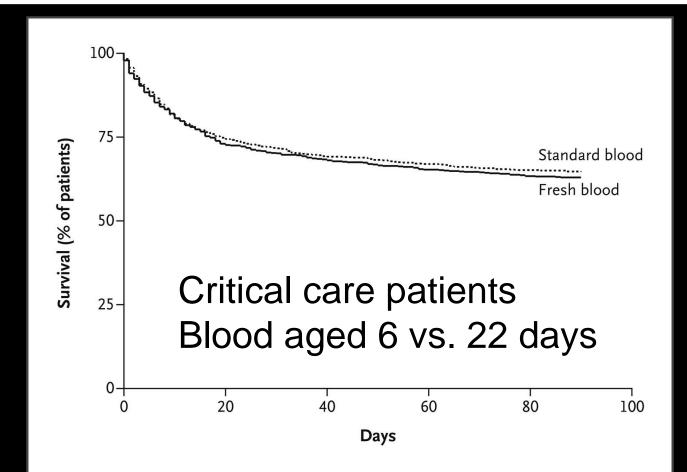

Free hemoglobin in stored blood scavenges NO, provoking systemic and pulmonary vasoconstriction

Storage Duration and Survival



Koch, NEJM, 2008

Storage Duration, Non-cardiac



Observational Mortality, n=380,000

Edgren, Transfusion 2011

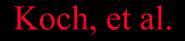
ABLE Trial (n=2,430)

Lacroix et al. N Engl J Med 2015

Recess Trial (n=1,098)

Subgroup	No. of Patients	≤10 Days	≥21 Days	· · · · · · · · · · · · · · · · · · ·	P Value for Interaction
		adjusted mea	an $\Delta MODS$		
Overall		8.49	8.66	-0.17 (-0.60 to 0.26)	
ABO blood group					0.06
Group O	439	8.53	8.54	-0.02 (-0.69 to 0.66)	
Group A	475	8.55	8.87	-0.32 (-0.97 to 0.32)	
Group B	127	7.64	8.65	-1.01 (-2.25 to 0.24)	
Group AB	46	9.75	7.52	2.23 (0.16 to 4.31)	
Group O vs. other blood groups					0.56
Group O	439	8.53	8.55	-0.02 (-0.69 to 0.66)	
All non-O	648	8.46	8.74	-0.28 (-0.83 to 0.28)	
Sex					0.87
Male	471	8.59	8.79	-0.21 (-0.85 to 0.44)	
Female	616	8.42	8.55	-0.13 (-0.70 to 0.43)	
Age					0.12
≤65 yr	279	8.66	8.26	0.40 (-0.45 to 1.25)	
>65 yr	808	8.44	8.81	-0.37 (-0.87 to 0.12)	
					0.14

Cardiac surgery patients Blood aged 7 vs. 28 days


Steiner et al. N Engl J Med 2015

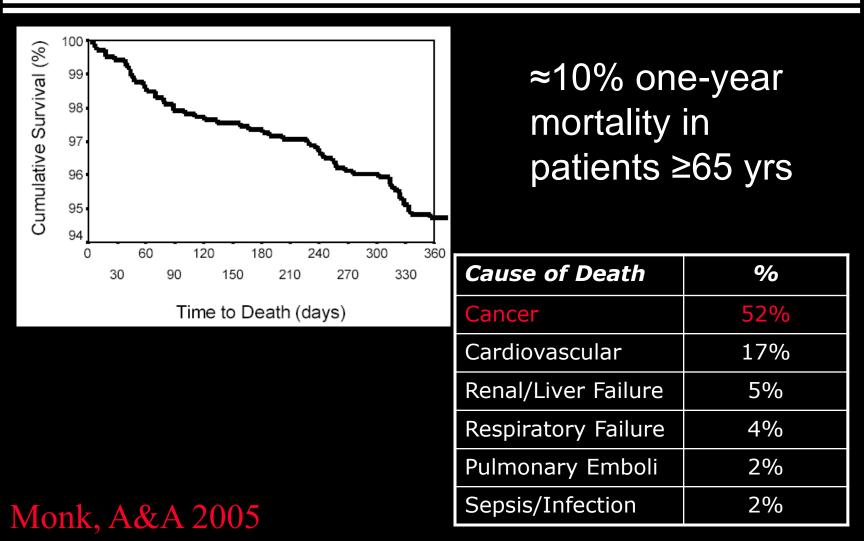
CCF Cardiac Surgery Trial

- Randomized trial of younger versus older blood
- Cardiac surgical patients
- Target n=2,838 transfused patients
 - n≈1,200 so far
 - Next interim analysis at n=1,814

Primary outcome

• STS Composite of serious complications

INFORM Trial


Randomized trial of younger versus older blood

- Virtually all patients at five centersNot restricted to surgical patients
- Target n=31,500 transfused patients •>24,000 so far

Primary outcome: in-hospital mortality

Eikelboom, et al.

Causes of Long-term Mortality

Cancer Surgery

Cancer recurrence is usually lethal

Surgery remains primary treatment

- Releases tumor cells into blood stream
- There is *always* minimal residual disease

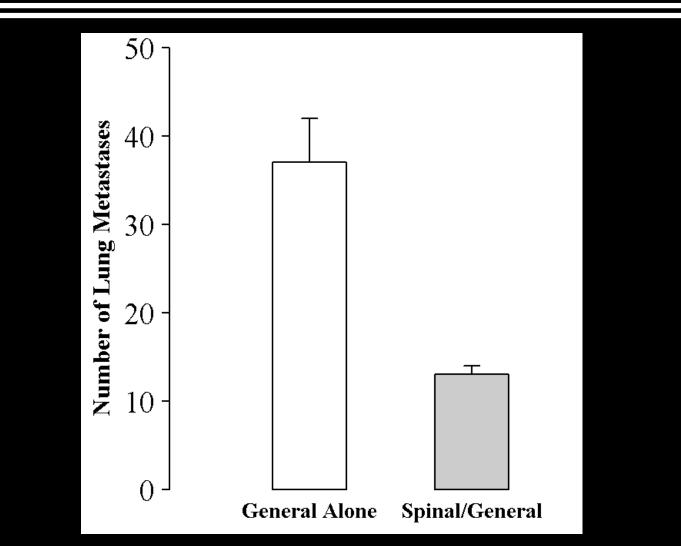
Natural killer (NK) cells are major defense

• Spontaneously recognize and kill tumor cells

Surgery and anesthesia impair NK Cell function

- Neuroendocrine stress response to surgery
- Volatile anesthetics
- Opioids

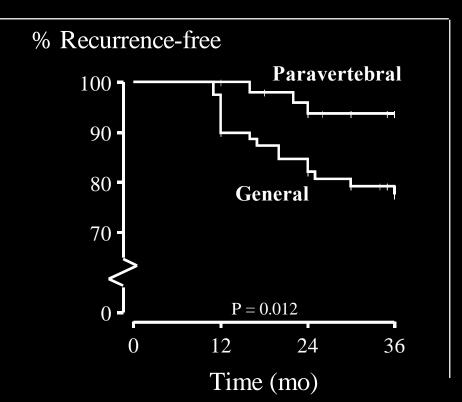
Regional Analgesia Protective?


Regional anesthesia & analgesia

- Reduces stress response to surgery
- Reduces or eliminates general anesthetics
- Obviates need for postoperative opioids
- All three help preserve NK cell function

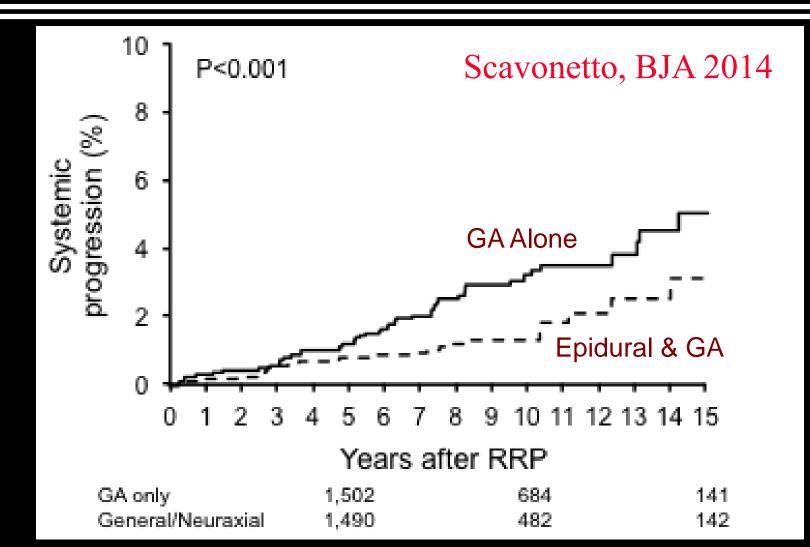
Hypothesis:

• Regional anesthesia & analgesia reduces risk of cancer recurrence


Rats: Bar-Yusof, Anesthesiology 2001

Paravertebrals & Breast Cancer

Retrospective analysis of 129 mastectomies for CA


- 50 had combined general & paravertebral analgesia
- 79 had general and morphine analgesia

Exadaktylos, Anesthesiology 2006

Epidurals & Prostate Cancer

Negative Retrospective Results

Ismail et al: BJA 2010

Brachytherapy for cervical cancer
 63 neuraxial vs. 69 general anesthesia

Gottschalk et al: Anesthesiology 2010

Colectomy for colon cancer
 256 epidural vs. 253 general anesthesia

Tsui et al: CJA 2010

Epidural analgesia for prostate cancer
 49 epidural vs. 50 general anesthesia

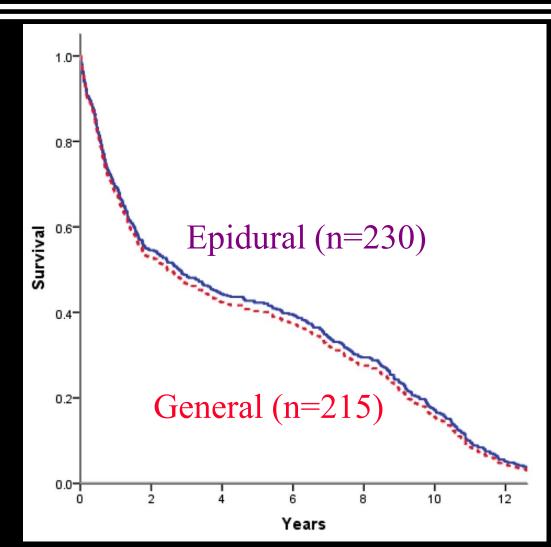
Forget et al: EJA 2011

Epidural analgesia for prostate cancer
 578 epidural vs. 533 general anesthesia

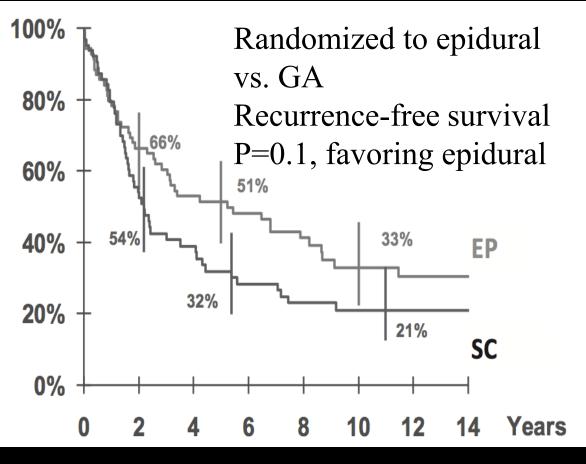
Day et al: BJA 2012

- Laparoscopic colectomy
- 107 epidural; 144 spinal; and 173 general alone

And others...


MASTER Trial Follow-up

Myles, BMJ, 2011


Also negative:

Tsui 2010

Christopherson 2008

Binczak, et al 2013 (n=132)

Trials of breast and lung cancer in progress

Major abdominal surgery

Perioperative Mortality

Intraoperative mortality rare

Thirty-day postoperative mortality

- 1% nationwide in United States
- 80% of one-month deaths during initial hospitalization
- Mostly cardiovascular or consequent

Postoperative MI poorly understood

- Etiology?
- Prediction?
- Prevention? (today's focus)
- Treatment?

Postoperative MIs are Common

- \approx 230 million non-cardiac operations / year
- MI incidence 8% among inpatients >45 years
 ●≈10 million postoperative infarctions per year
- Nearly all non-ST segment elevation
 - Plaque rupture?
 - Supply-demand mismatch?
 - Thrombus?

VISION: JAMA 2012 and Anesthesiology 2014

Silent and Deadly

80% of MIs *only* detected by troponinMost do not have chest pain, SOB, ECG changes

Mortality identical after apparent & silent MIsIt's not just "troponitis"

Mortality is 10% at 30 days

- Twice as high as non-operative infarctions –Different?
 - -Unrecognized?
 - -Untreated?

VISION: JAMA 2012 and Anesthesiology 2014

Troponin Predicts Mortality

"Prognosis define diagnosis"

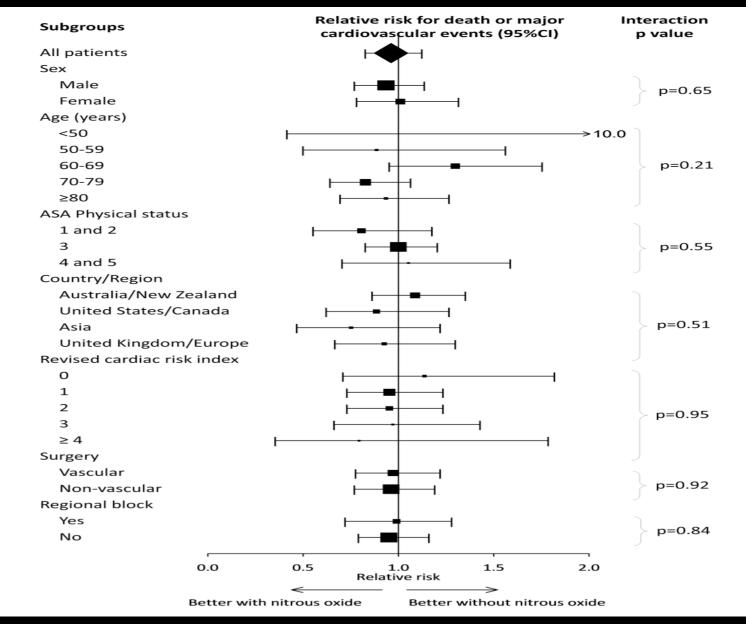
Even slight troponin elevations predict death

Peak Troponin (ng/ml)	30-day Mortality (%)	Time to death (days)
< 0.01	1	
0.02	4	13
0.03-0.29	9	9
≥0.3	17	6

ENIGMA-2

Background

- N₂O increases plasma homocysteine
- N_2O impairs endothelial function


Hypothesis

- N_2O increases 30-day death or major CV events
- MI required troponin elevation & clinical event

Myles, Lancet, 2014

Randomized trial in 7,000 high-risk patients

- 70% nitrous oxide
- 70% nitrogen

POISE-2 Background

Surgery

- Inflammatory response activates platelets
- Promotes tachycardia

Aspirin

- Impairs platelet aggregation
- Prevents non-operative primary & secondary MI

Clonidine

- Moderates central sympathetic activation
- Heart rate control
- Less hypotension than beta blockers
- Analgesic and anti-inflammatory

POISE-2 Design

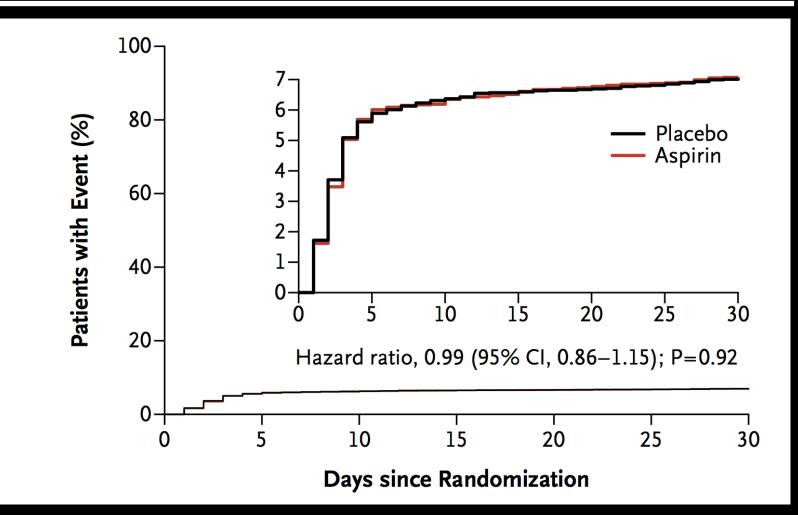
10,000 inpatients >45 yrs at cardiovascular risk

Blinded 2 X 2 factorial trial

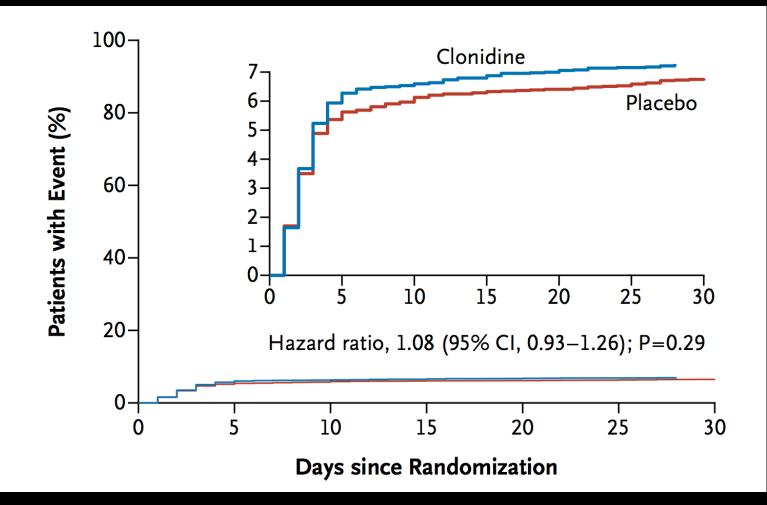
Aspirin 100 mg/day *vs.* placebo for 7 or 30 days
Clonidine 75 µg/day *vs.* placebo for 72 hours

Primary outcome

- Death or MI within 30 days
- MI required troponin elevation and clinical events


POISE-2 Results, Aspirin

Outcome	Aspirin (4998)	Placebo (5012)	HR (95% CI)	Р
1 ⁰ outcome: death or nonfatal MI	351 (7.0)	355 (7.1)	0.99 (0.86- 1.15)	0.92
Major bleed	229 (4.6)	187 (3.7)	1.23 (1.01- 1.49)	0.04
Stroke	16 (0.3)	19 (0.4)	0.84 (0.43- 1.64)	0.62


No interaction with clonidine

Devereaux, NEJM 2014

Aspirin, Death & MI

Clonidine, Death & MI

POISE-2, Clonidine Results

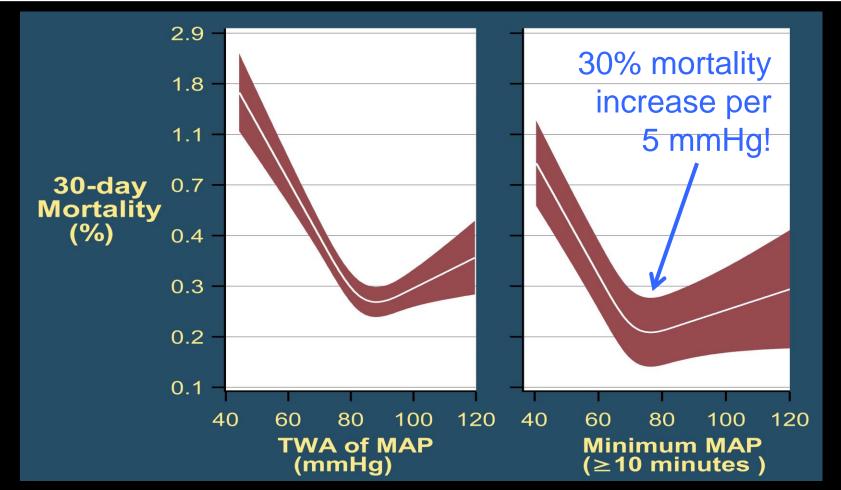
Outcome	Clonidine (5009)	Placebo (5001)	HR (95% CI)	Р
Clinically important hypotension	2385 (48)	1854 (37)	1.32 (1.24- 1.40)	<0.001
Clinically important bradycardia	600 (12)	403 (8)	1.49 (1.32- 1.69)	<0.001
Stroke	18 (0.4)	17 (0.3)	1.06 (0.54- 2.05)	0.87

No interaction with aspirin

Devereaux, NEJM 2014

POISE-2 Conclusions

Aspirin


- Does not prevent death or MI
- Increases life-threatening bleeding
- Should not be used for MI prophylaxis

Clonidine

- Does not prevent death or MI
- Causes clinically important hypotension
- Should not be used for MI prophylaxis

A safe and effective way to prevent perioperative myocardial infarctions remains unknown

Association with MAP

Mascha, Anesthesiology, in press

Summary of Long-Term Outcomes

Prolonged storage of transfused red cells

- Association with complications in some studies
- Randomized trials in progress

Regional analgesia and cancer recurrence

- Immunologic & animal data suggest reduced risk
- Current human data poor and conflicts
- Randomized trials in progress

Perioperative heart attacks

- Common, silent, and deadly
- Predication, etiology, prevention, and treatment remain unknown

Cleveland Clinic

Department of Outcomes Research