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Background 
Anesthesiologists frequently handle multiple cases in parallel, each requiring specific plans and 

modifications based on perioperative changes.   Anesthesiologists make decisions regarding monitoring 

needs, airway management, IV access, fluids, blood products, laboratory draws, medication selection, 

route and dosing, among others.  Throughout an operation, anesthesia providers make additional real-

time decisions on a minute-by-minute basis.  This amounts to over hundreds of decisions for each case 

and allowing for a wide range of variation in anesthetic practice.  The decisions anesthesiologists make, 

both before and during a case, influence a patient’s risk of complications (e.g., intraoperative blood loss, 

myocardial infarction (MI), stroke) and postoperative adverse outcomes (e.g., nausea/vomiting, pain 

control, respiratory distress)[1-4].  Plans and subsequent anesthetic execution are often provider 

specific and predicated on his/her training and the protocols of the institution under which they provide 

care.  This allows for a large variation in how anesthesiology is performed, across patients, providers, 

and institutions.  Additionally, while organization-based protocols exist, executed plans vary widely, with 

little agreement regarding what constitutes optimal.  We plan to investigate this variation in anesthetic 

care. 

While others have conducted observational studies regarding variation in anesthetic care and its impact 

on perioperative outcomes, these studies have been limited to either one particular operation or one 

particular decision (e.g., general anesthesia vs. neuraxial anesthesia)[5-7]. Moreover, prior work includes 

limited data regarding the patient receiving the care.  In contrast, we plan to develop data-driven 

techniques that incorporate patient data available prior to and throughout their care to help 

anesthesiologists navigate the wide range of decisions they make. In doing so, we will learn patient-

specific treatment protocols for improved outcomes, with a focus on the education of anesthesia 

providers as to the safe variability in patient care.     

We will study the heterogeneity of delivered anesthesia and associated outcomes.  This heterogeneity 

will be evaluated from several levels: surgical case, institutional, etc.  From these data, we will gain 

insight into existing variation in the practice of anesthesiology and will develop a computational 

framework to learn from this heterogeneity and improve patient care.  The results of this work aim to 

give anesthesiology providers deep insight into their practice.  We will build a framework to identify 

important decisions made in anesthetic care and build a platform and to allow providers the ability to 

view variation in care.  We have three specific aims of this project: (1) characterize heterogeneity in 

anesthesiology practice and associated outcomes, (2) create a visual tool for providers to better 

understand variations, (3) utilize aspects of this case organization within a specific case group to analyze 

intraoperative decisions made by anesthesiology providers as a method to gain insight into optimal 

anesthetic plans.  In this work we will use clustering, natural language processing, and machine learning 

(including reinforcement learning techniques in time-series analysis) to both understand practice 

variation and to develop deeper understanding of the choices anesthesiologists make in their care for 

patients.  We aim to investigate these choices in their variation, timing, quantity, quality, and 

surrounding informational and decisional structures.  We aim to provide users with a web interface to 

view specific plan variation.  Ultimately, this tool will be a valuable informational resource for providers 

at every level of their continued medical education.  While this work will focus on the delivery of 



anesthesia, we expect that the theoretical and empirical results of our work in anesthesiology will 

generalize beyond this specific case, to other aspects of patient care involving sequential decision 

making.   

 

Specific Aims 

Aim 1.  Characterize heterogeneity in anesthesiology provider decisions (1A) and associations with 

risk-adjusted outcomes (1B).  Using case level, provider level, and institution level perioperative EHR 

data we will identify variables (factors) on which anesthesia providers make important decisions at a 

case-level.  We will evaluate these factors as decision points with the intent to determine the critical 

features within care variation.  Important risk-adjusted outcomes will be evaluated for the case 

heterogeneity as a means of clinical comparison. 

 

Aim 2.  Create a clinically usable visual tool to understand variation in decisions specific to cases and 

institution.  This visualization tool will be constructed with the intended use in education for anesthesia 

providers to identify variation in anesthetic practice. 

 

Aim 3.  Analyze intraoperative decisions made by anesthesiology providers as a method to gain insight 

into optimal anesthetic decision plans.  We will build on Aims 1-2 to investigate intraoperative 

decisions made my anesthesia providers on a minute-by-minute basis.  For this aim, we will identify a 

cohort of cases in a defined patient subpopulation, specific outcomes, and target features after analysis 

of aims 1 and 2.  With this aim we seek to provide near real-time prediction for common but complex 

treatment modalities. 

Methods 

Patient Population 

The study population will consist of all procedural cases documented in the MPOG database including 

both adults and children.  Not limited by age, surgical procedure, time period, or ASA status.  An 

example of a cohort specific for Aim 3 of this project is adult patients undergoing major vascular 

procedures between the years 2010-2018. 

Exclusion Criteria 

We will exclude cases that have incomplete or duplicate records.  An example exclusion criteria specific 

for Aim 3 of this project are patients with a status of ASA 6 or existing mechanical circulatory support. 

Primary Objectives 

Aim 1A: Identify and characterize by descriptive data within MPOG, as determined by clinical utility and 

usefulness in clinical practice. 

Aim 1B: Establish and assess utility of risk-adjusted outcomes to be incorporated within a clinical tool for 

anesthesia providers.  We will utilize phenotypes describing perioperative outcomes including 30-day in-



hospital mortality, MI, acute kidney injury (AKI), estimated blood loss (EBL), stroke, pulmonary edema, 

case-specific information such as fluid and blood product administration, and provider quality metrics 

through the Anesthesiology Performance Improvement and Reporting Exchange (ASPIRE) such as blood-

pressure and temperature monitoring and control.  

Aim 2: Present the framework of important decisions made in anesthetic care within a visual interface to 

allow providers the ability to view variation in care.   

Aim 3: Learn and evaluate intraoperative treatment utility to understand and improve care. 

Data Organization and Clustering 

Clustering is a critical component to all three aims of this project.  We seek to characterize variation 

across treatment plans within a given patient subtype, based on case characteristics available prior to 

the operation.  We will compare two different approaches to clustering: one based on a raw feature 

representation and another based on a learned latent representation that leverages the temporal 

structure of the medical plan.  We can cluster patients into subtypes and executed plans and visualize 

empirical distributions.  Each case will be represented by a high-dimensional feature vector. 

We will start by investigating important decision points within anesthetic care.  These decision points 

will help identify heterogeneity in anesthetic care and associated outcomes.  We will cluster patients 

based on their pre-operative case characteristics including those found in Table 1.  

Table 1: Patient and Anesthetic Management Characteristics 

Categorization Features Specified groupings 

Patient Surgical procedure type Anesthesia CPT codes 

Age Years, grouped by number of decades over 30 

Gender Male / female 

ASA status 1 / 1E / 2 / 2E / 3 / 3E / 4 / 4E / 5 / 5E / 6 

Comorbidities Elixhauser comorbidities[8] 

Case Medications administered Inhalational Anesthetics 

IV Sedative Hypnotics 

Analgesics 

Benzodiazepines 

Monitoring Arterial line 

Central line 

PA catheter 

Echocardiography 

Airway management MAC 

General - Supraglottic airway 

General - Endotracheal tube 

Anesthetic technique Neuraxial 

Peripheral nerve block 

 



We will first develop a vector representation for anesthetic plans.  In addition, to a handcrafted 

representation, we will also consider representations learned via sequence embedding techniques (e.g., 

LSTM auto-encoder).  Based on these representations, we will cluster anesthetic plans within a patient 

subtype cluster, and will visualize the different anesthetic plans based on the median of each cluster.  

After clustering and visualization, data will then be organized into hierarchical structuring after learning 

a mapping from the preoperative information to anesthetic execution.  Clustering in this way allows us 

to partition decisions so we determine the common and the important features from each specific 

procedure.  For example, important features having high heterogeneity in major abdominal surgery may 

include use of an arterial line and multimodal analgesia; when applied to cardiac surgery, however, 

these features may lack heterogeneity, and features such as selection of vasoactive medications and 

transfusion strategy may prevail as important features.  An example can be seen in table 2. 

Table 2: Simplified Hypothetical Cluster Results of Important Features for Specified Procedures 

Procedure Important features with high heterogeneity 

Abdominal surgery Use of arterial line, multimodal analgesia 

Cardiac surgery Vasoactive infusions, transfusion strategy 

Total knee/hip surgery Use of epidural, peripheral nerve block 

 

Techniques that we will implement include spectral clustering, K-means, Density-based spatial clustering 

of applications with noise (DBSCAN), etc.  Visualization of the clusters will be a key component in 

assessing clustering applicability and will be achieved using orthogonal and nonlinear dimensionality 

reduction with principal components analysis (PCA), T-distributed Stochastic Neighbor Embedding (t-

SNE), among other methods (Figures 1-2).  We will also select the number of clusters based on the 

change in eigenvalues when using a spectral clustering approach. Clusters will be validated based on 

stability in held-out data.   

Variation in medication plans within a patient subtype may result from variation within the subtype 

itself.  Since subtypes are identified in an unsupervised manner, leading to potentially irrelevant clusters, 

we will also explore a supervised learning approach.  Specifically, we will learn a mapping from patient 

characteristics to a distribution over possible medication plans.  Based on a global clustering of 

medication plans, we will label patients based on the cluster assignment of the executed medication 

plan.  This results in a multi-class classification problem.   



 

Figure 1:  Clustering of case features using    Figure 2: Clustering of case features using DBSCAN                 
k-means and 8 clusters    

 

Interactive Web Interface 

We will create a web interface to allow users to explore and visualize variations in executed anesthetic 

care.  The initial rendering of this interface can be seen in Figure 3.  The user will login to the web 

interface which will limit views based on predetermined allowances for the user.  For example, providers 

at a single institution will be able to see anesthetic paths specific to their institution and those in 

aggregate of the MPOG institutions, but will not be able to see information from a specific separate 

institution.  After successful login, the user will be allowed to select case and patient information and 

view the details of anesthetic paths and their associated outcomes.  We will design user inputs functions 

in the form of drop down menus, multiple selects, free entry, etc.  To prevent specific case 

identification, views will be rendered only for a minimal number of cases, i.e. if the query does not 

render the number of cases to exceed the minimum threshold an error message will return.  Successful 

queries will result in tabular and graphical displays that will themselves be interactive for the user.  We 

anticipate the ability for the user to select single features (ex. a specific medication) to anchor or avoid 

within a query.  Analysis of outcomes will be provided specific to the case query results.  Outcomes and 

other features in the interface will be managed selectively by site champions, allowing the regulation of 

dissemination of information as to help limit misinterpretation.      

 



 

Figure 3:  Knee arthroplasty anesthetic practice variation. The top five unique paths are illustrated by line tracing. Segments 
represent clustered anesthetic choices.  Search criteria are represented as drop down menus in the upper left.  Graphs at the 
lower left represent patient demographics within the returned query.  The table at the top of the figure shows the selection 
highlighted, displaying the number of cases returned from the query.    

 

Decision Analysis 

Specific for Aim 3 of this project, we plan to investigate intraoperative decisions made by anesthesia 

care providers.  Specific details into how the decision analysis will be performed can be found in the 

Machine Learning Methods and Implementation section of this document.   

In addition to identifying potential management plans tailored to individual patients and procedures, 

the proposed approach will provide estimates of the probability that the anesthesia provider will have 

to deviate substantially from the proposed plan (i.e., estimates of uncertainty).  This will be achieved by 

analyzing the variation in anesthetic path.  This analysis will allow providers to further anticipate 

difficulties that may arise intraoperatively.   Decisions made and their analysis will incorporate 

perioperative clinical features including vital signs in waveform and epoch forms.  Additional decision 

analysis will incorporate actionable features and anesthesia quality metrics.   



We will use blood pressure (BP) as an example.  BP is often a frequent and challenging intraoperative 

vital sign to manage.  Variation of BP within anesthetic care is a common research topic as well-

established treatment guidelines to aid in decision making either do not exist or change frequently with 

changing practice[9].  As a result, anesthetic care varies widely across institutions and providers.  We 

plan to learn and evaluate improved intraoperative treatment policies for blood pressure management.  

Using contextual data collected prior to the operation and detailed intraoperative data collected 

throughout the delivery of anesthesia, we will learn a mapping from context and patient state to 

action/decision that aims to optimally control blood pressure (e.g., provider decisions to administer 

fluids, administer vasopressor medications).  We will develop and use batch off-policy reinforcement 

learning techniques to leverage the large amount of variation in current practice.  Once developed, this 

framework can generalize to other perioperative outcomes.   

Features and Feature Preparation 

Features used within this study will include existing and any newly created phenotypes collected from 

the MPOG database as they are presented from the individual institutions including age, sex, weight, 

height, ASA status, emergent status, procedure text, procedure duration, medications administered 

(including dose, route, unit of measure, time), peripheral and neuraxial blocks performed, line 

information (IV, arterial, central, etc.), Elixhauser comorbidities, operative complications, current 

procedure terminology (CPT) codes, intraoperative oral morphine equivalents (OME), among others.  

Features may be combined into new features if necessary in model construction as a means of feature 

engineering.  Vital signs will be processed in the form of epochs and as waveforms as deemed necessary 

by modeling techniques. 

We are focused on providing clinically relevant outcomes. As an example, oral morphine equivalent 

(OME) is a common method to represent opioid utilization in patients[10].  We will utilize phenotypes 

around perioperative outcomes including 30-day in-hospital mortality, MI, AKI,  EBL, stroke, pulmonary 

edema, case-specific information such as fluid and blood product administration, and provider quality 

metrics through the Anesthesiology Performance Improvement and Reporting Exchange (ASPIRE) such 

as blood-pressure and temperature monitoring and control.   

Text-based features will be processed prior to use and will include custom spell check and correction, 

removal of punctuation and non-alpha characters, case-sensitive normalization, potential removal of 

single characters and identified words (ex. English StopWords).  Medical abbreviations will be expanded 

to long form to aid in processing and information retention.  Procedure text will be taken as “actual 

procedure text” uploaded by the institution.  In the situation where “actual procedure text” is missing, 

“scheduled procedure text” will be.   

Features may be constructed from text in a form the models will be able to properly assess.  This will 

include n-gram creation where the text will be cut into smaller sized text phrases of “n” length.  The 

cutting is in order such that “I went for a run today” would be processed as the following variables using 

bigram (i.e., n=2): “I went”, “went for”, “for a”, “a run”, and “run today.”  Word correlations will be 

constructed as well, in which terms that are found together with the same text can be used to 

differentiate and assign value.  We will use co-occurrence measures such as GloVe: Global Vectors for 



Word Representation, which make use of global word-word co-occurrence counts to create word 

vectors[11].  Vector word representations are compressed representations of overall variable arrays 

constructed above, such as n-gram[12].  By compressing the data computational time and model 

construct time are reduced.  Furthermore, these representations break words into indices, which allows 

for larger amounts of data to be processed and in doing so simpler models can have more data and 

outperform more complex models with less data[13].  Vector representations also allow for words to be 

expressed in relation to each other as opposed to simple atomic symbols.  In this manner words can 

convey more representative meanings the way audio and image data can.  We will use several different 

types of vector word representations.  

We will use term frequency-inverse document frequency (tf-idf) as a numerical statistic and as a 

weighting method when comparing variables.  Using tf-idf in addition to frequencies allow us to discover 

specific variables that could potentially be rare, but extremely useful for differentiation.  A high tf-idf 

could indicate an important variable where as a low tf-idf could indicate common, less important 

variables.   

We will use generative statistical models to increase the depth of representation of the text as to learn 

meaningful abstractions from an external dataset.  We will do so using topic models, such as latent 

Dirichlet allocation (LDA).  LDA views a document as a mixture of a range of topics in which each word’s 

creation is generated by one of the document’s topics.  LDA works in an unsupervised way and is able to 

discover hidden topics from a large collection of documents.  We propose to collect a much richer 

dataset using the Pubmed database and learn a topic model from this rich dataset.  We will apply the 

model to procedural text and extract the hidden topics discovered from the Pubmed abstract to enrich 

the representation of features with shorter text. 

Various additional natural language processes and techniques not listed above may be used in 

processing and model creation.         

Machine Learning Methods and Implementation 

The variation in care provides an opportunity from a machine learning perspective.  We will use machine 

learning methods to both characterize existing heterogeneity in the data and develop frameworks with 

the goal of leveraging the observed treatment heterogeneity to learn patient-specific protocols for the 

optimal delivery of anesthesia and improved patient outcomes. 

We will create various machine learning models, each with their own strengths and weaknesses in order 

to compare them against one another in decision and predictive analyses.   Planned prediction models 

include linear support vector machine (SVM), long short-term memory neural network (LSTM), extreme 

gradient boosting (Xgboost), random forest (RF), etc.   

One specific focus will be using a reinforcement learning (RL) framework in which we will focus on the 

sequence of decisions a provider makes, and where each patient trajectory can be modeled as a 

contextual Markov decision process (MDP).  For example, we will use intraoperative blood pressure (BP) 

variation and resulting treatments in this model.   We will use contextual MDPs in a ‘batch’ setting in 



which we are limited to learning from historical data to help understand BP treatment variations and 

their appropriateness. 

We will consider techniques designed to explicitly model the temporal dependence between decisions 

(e.g., recurrent neural networks).  Using a vector-to-sequence architecture, one can learn a 

representation of the case using an encoder and then learn a mapping from this representation to a 

sequence of distributions over possible decisions using a recurrent decoder.  Such an approach 

generalizes to decisions regarding other aspects of the plan without requiring one to explicitly define a 

notion of similarity between plans.  Once we have learned mappings from patient/procedure to 

executed anesthesia plan, we will measure expected outcomes associated with each anesthesia plan 

cluster.  We will label plans according to our primary outcome of interest: for example, blood pressure 

management, specifically intraoperative hypotension, defined as 20, 30, or 40% decrease below the 

patient’s preoperative baseline (for either SBP or MAP).  Beyond blood pressure management, we will 

consider post-operative outcomes including but not limited to 30-day in-hospital mortality and acute 

kidney injury (AKI). 

In reinforcement learning (RL) setting, an agent interacts sequentially with an environment, soliciting a 

reward.  This is commonly modelled using a Markov decision process (MDP) M = (S, A, P, R, ƴ) where S is 

the state space, A is the action space, P is a transition probability function from state and action to the 

next state, R is a stochastic function from Q: S x A ⟶ R, and ƴ ∈ [0,1] is the discount factor for the 

reward[14].  “Q” stands for the "quality" of a state-action combination.  In an episodic setting, an agent 

observes the current state st ∈ S, chooses an action at ∈ A and then transitions to st+1 according to some 

probability distribution Pa
st.  In addition, the agent receives an instantaneous reward rt := R(st, at). This 

process continues until reaching the end of the episode at time step T.  An agent behaves according to 

some policy Π where Π(a|s) := Pa
st.  In our setting, each operation corresponds to an episode. We will 

sample trajectories on a minute by-minute basis.  We will consider a continuous state space, S consisting 

of both preoperative and intraoperative variables.  At each time step, patient state will be represented 

by a concatenation of time-invariant pre-operative and time-varying intra-operative variables.  We will 

initially focus our analysis on blood pressure management. Thus, we limit the decision/actions to those 

that affect blood pressure management (e.g., delivery of medications and fluids). 

All models will be constructed and optimized using the computational languages Python and R.  

Traditional ML models will be trained over a 5-fold cross validation and evaluated.    

Evaluation Plan 

We will validate our findings in a held-out dataset consisting of a subset of data from each MPOG 

institution and of data from MPOG institutions not present in the training data (to measure 

generalizability across institutions).  We will measure the robustness/stability of the learned clusters, 

and we will evaluate discriminative performance in terms of class-specific accuracy for the multi-class 

classification task.  When evaluating the vector-to-sequence model, we will cluster the actual and 

generated sequences in a post-processing step and evaluate class specific accuracy as above.  While 

recurrent neural networks (RNNs) are a natural choice when modeling trajectories, they often lack the 



degree of interpretability required in clinical care.  We will compare the tradeoffs between 

generalizability and interpretability. 

For the RL framework, we will evaluate models on a held-out test set of patient trajectories by 

measuring the difference between current policies and the learned “optimal” policy in terms of patient 

outcomes (i.e., observed cumulative reward).  We will bin Q-values and measure the relationship 

between the average Q-value and average outcome within each bin.  This will provide a mapping from 

Q-value to reward (e.g., survival).  Given that we are in a batch setting in which the data are sampled 

offline, we cannot test our policies prospectively, so we will consider batch off-policy evaluation 

techniques (e.g., doubly-robust off-policy evaluation[15] and MAGIC estimator[16]). We will compare 

the average expected reward associated with the learned policy, versus the average expected reward 

obtained by the anesthesia provider’s policy (learned via SARSA). 

Anticipated Limitations 

Our proposed research study has anticipated limitations.  One limitation is in the accuracy of the 

institutional data.  We will hand audit outlier statistics and cases for validity.  To prevent possible 

misinterpretation of data and its dissemination we will involve individual institution champions to aid in 

information release.  Another limitation is case variability between institutions.  There is likely a wide 

range in the number of specific cases at each institution.  We will limit representation using a minimal 

threshold for each query result.   

 

Statistical Analysis 

Primary analysis 

Primary analysis will assess variation in anesthetic execution.  Overall accuracy of ML models will be 

calculated across clusters[17].  Precision (positive predictive value), recall (true positive rate, sensitivity), 

F1 scores (binary classification measure of accuracy), and Gini coefficients will be calculated within 

model.  Standard error calculated from a 5-fold cross validation method in which the study population 

will be split into 5 distinct, but similar groupings.  Models will be trained on 4 of the groupings with one 

group held out for testing.  This will yield 5 distinct train/test scenarios.  The average, precision, recall, 

and standard deviations will be calculated as comparison within these groupings.  An additional, entirely 

novel set of data will be withheld for generalized testing. 

Missing Data 

We will use exclusion or imputation, as appropriate.   

 

Human Subjects’ Risks and Data Protection 
Data analysis will be restricted to aggregated group data.  Data will be de-identified regarding individual 

hospitals, unless specifically discussed and approved by individual hospitals for their own internal use.  



While hospital and hospital characteristics might be part of the analysis to account for practice variation, 

no individual hospitals will be identifiable in the results or publication, again discussed and approved by 

individual hospitals for their own internal use.  Each group will contain a sufficient number of hospitals 

and cases to ensure de-identification or no group analysis will be performed.  Again, data analysis and 

results will not allow identification of individual contributing sites. 

Data will be maintained on a password protected secure MPOG server hosted.  The study data will be 

accessible only to the statistical team directly involved with analyzing the data. The system fully meets 

all applicable HIPAA privacy and security rules. Access to the database and backups are strictly 

monitored according to need. 

The final dataset will contain no patient or caregiver identifier.  No protected health information or 

identifying information about individual patients, caregivers or hospitals will be part of a publication. 

 

Impact 
Overall, this work will improve our current understanding of variation in the delivery of anesthetic care 

and will inform future work on the development of methodologies to automatically map patients to 

‘optimal’ plans.  The techniques developed here can apply more broadly as healthcare providers 

routinely develop and execute longitudinal treatment plans. 

The RL framework developed in this research can be used to study other intraoperative 

actions/decisions and rewards, in which prior context is available.  Since we consider the preparation 

plan as input to the model, in future work, we can build on the proposed work, jointly optimizing both 

the preparation plan and intraoperative plan.  This work will lay the groundwork for future research 

directions in studying the limitations of learning from batch time-series data collected in a clinical 

setting. 

The resulting visualization tool could be used by individual hospitals and their providers to aid in 

continued medical education and facilitate the preparation of anesthetic care plans.   

Finally, longitudinal care/treatment analysis can be utilized across all medical specialties.  This project, if 

successful, will provide a framework for retrospective and predictive analysis within future related 

projects. 

 

 

  



References 
1. Macario, A., et al., Which Clinical Anesthesia Outcomes Are Important to Avoid? The Perspective of 

Patients. Anesthesia & Analgesia, 1999. 89(3). 
2. Macario, A., et al., Which clinical anesthesia outcomes are both common and important to avoid? The 

perspective of a panel of expert anesthesiologists. Anesth Analg, 1999. 88(5): p. 1085-91. 
3. Myles, P.S., et al., Systematic review and consensus definitions for the Standardised Endpoints in 

Perioperative Medicine (StEP) initiative: patient comfort. British Journal of Anaesthesia, 2018. 120(4): p. 
705-711. 

4. Jammer, I., et al., Standards for definitions and use of outcome measures for clinical effectiveness research 
in perioperative medicine: European Perioperative Clinical Outcome (EPCO) definitions: a statement from 
the ESA-ESICM joint taskforce on perioperative outcome measures. Eur J Anaesthesiol, 2015. 32(2): p. 88-
105. 

5. Gabriel, R.A., et al., Practice Variations in Anesthetic Care and Its Effect on Clinical Outcomes for Primary 
Total Hip Arthroplasties. The Journal of Arthroplasty, 2016. 31(4): p. 918-922. 

6. Smith, L.M., et al., Neuraxial and Combined Neuraxial/General Anesthesia Compared to General 
Anesthesia for Major Truncal and Lower Limb Surgery: A Systematic Review and Meta-analysis. Anesth 
Analg, 2017. 125(6): p. 1931-1945. 

7. Giese, I. and C. Kloek, Learning From the Past and Looking Toward the Future in Cataract Surgery: How to 
Evaluate Innovations and Incorporate Into Clinical Practice. International Ophthalmology Clinics, 2017. 
57(4): p. 11-19. 

8. Quan, H., et al., Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. 
Med Care, 2005. 43(11): p. 1130-9. 

9. Li, D., C. Bohringer, and H. Liu, What is "normal" intraoperative blood pressure and do deviations from it 
really affect postoperative outcome? J Biomed Res, 2017. 31(2): p. 79-81. 

10. Nielsen, S., et al., A synthesis of oral morphine equivalents (OME) for opioid utilisation studies. 
Pharmacoepidemiol Drug Saf, 2016. 25(6): p. 733-7. 

11. Jeffrey Pennington, R.S., and Christopher Manning, Glove: Global vectors for word representation. 
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 
2014: p. 1532–1543. 

12. Sampo Pyysalo, F.G., Hans Moen, Tapio Salakoski, and Sophia Ananiadou, Distributional semantic 
resources for biomedical text mining. Proceedings of the 5th International Symposium on Languages in 
Biology and Medicine, 2013: p. 39-44. 

13. Mikolov, T., Chen, K., Corrado, G., & Dean, J., Efficient estimation of word representations in vector space. 
ICLR, 2013. 

14. Sutton, R.S. and A.G. Barto, Reinforcement Learning: An Introduction. IEEE Transactions on Neural 
Networks, 1998. 16: p. 285-286. 

15. Dudík, M., J. Langford, and L. Li, Doubly robust policy evaluation and learning. arXiv preprint 
arXiv:1103.4601, 2011. 

16. Thomas, P. and E. Brunskill. Data-efficient off-policy policy evaluation for reinforcement learning. in 
International Conference on Machine Learning. 2016. 

17. Lee, H.C., et al., Prediction of Bispectral Index during Target-controlled Infusion of Propofol and 
Remifentanil: A Deep Learning Approach. Anesthesiology, 2018. 128(3): p. 492-501. 

 


