ASPIRE Outcome Measure Design:

Risk adjustment, provider attribution, and healthcare value

http://mpog.org/wp-content/uploads/2018/07/QI-Story_HenryFord_Hightower.pdf

Michael Mathis, MD

Assistant Professor of Anesthesiology

Director, Cardiothoracic Anesthesiology Research

University of Michigan Medical School

Tenets of the Ideal Outcome Measure for QI

- Variation in the outcome <u>exists</u> and is <u>measurable</u>
- Variation is *attributable to providers* (at least in part) participating in the QI collaborative
- All remaining variation in the outcome is explained by factors which can be measured and <u>risk-adjusted</u>
 - Patient characteristics
 - Surgical characteristics
- Providers have an <u>opportunity to intervene</u>
 - Enables a plan for how to improve
- Outcome has significant *healthcare value*, as supported by evidence
 - Ensures focus on the right measures

How can MPOG achieve these ideals?

- Current outcome measures
 - <u>AKI 01</u>: Preventing Acute Kidney Injury
 - <u>CARD 02</u>: Avoiding MI (Troponin I < 0.6)</p>
 - TRAN 02: Post Transfusion Monitoring

- **<u>AKI 01</u>**: Preventing acute kidney injury
 - Who is responsible?

- **<u>AKI 01</u>**: Preventing acute kidney injury
 - Who is responsible?

Provider	AKI Mechanism		
Anesthesiologist	Hemodynamics, fluid management, diuretics, glycemic control		

- **<u>AKI 01</u>**: Preventing acute kidney injury
 - Who is responsible?

Provider	AKI Mechanism
Anesthesiologist	Hemodynamics, fluid management, diuretics, glycemic control
Surgeon / Proceduralist	Direct injury, physiologic insult, nephrotoxins

- **<u>AKI 01</u>**: Preventing acute kidney injury
 - Who is responsible?

Provider	AKI Mechanism
Anesthesiologist	Hemodynamics, fluid management, diuretics, glycemic control
Surgeon / Proceduralist	Direct injury, physiologic insult, nephrotoxins
Other	Pre-existing CKD, comorbid conditions, lifestyle factors

- What is it?
 - Method to more accurately assess performance, accounting for baseline risk
- Why do we need it?
 - Establishes basis for comparison across providers/institutions with varying baseline risk
 - Isolates component of outcome attributable to the anesthesiologist

- How does it work?
 - Compares a provider's *observed* performance to what was *expected*

- How does it work?
 - Compares a provider's *observed* performance to what was *expected*
 - Two example providers:

	Case Type Performed	# Cases <i>observed</i> to have AKI
Provider A	100 AAA repairs	20
Provider B	100 colonoscopies	3

- Who is doing better?
- Incidence of AKI:
 - -Provider A \rightarrow 20%

- Provider B \rightarrow 3%

	Case Type Performed	# Cases observed to have AKI
Provider A	100 AAA repairs	20
Provider B	100 colonoscopies	3

- Incidence of AKI:
 - -Provider A \rightarrow 20%
 - -Provider B \rightarrow 3%

	Case Type Performed	# Cases observed to have AKI	# Cases <i>expected</i> to have AKI
Provider A	100 AAA repairs	20	80
Provider B	100 colonoscopies	3	2

- Incidence of AKI:
 - -Provider A \rightarrow 20%
 - -Provider B \rightarrow 3%
- Comparing provider's *observed* performance to what was *expected*:

	Case Type Performed	# Cases observed to have AKI	# Cases <i>expected</i> to have AKI	Observed / Expected (O/E) Ratio
Provider A	100 AAA repairs	20	80	20/80 = 0.25
Provider B	100 colonoscopies	3	2	3/2 = 1.50

- Incidence of AKI:
 - -Provider A \rightarrow 20%
 - -Provider B \rightarrow 3%
- Comparing provider's *observed* performance to what was *expected*:

• Analogous to Degree of Difficulty:

- Execution: 9 out of 10
- **Degree of Difficulty**: x1.0 (cakewalk)

Colonoscopy

- **Execution**: ? out of 10
- **Degree of Difficulty**: x5.0 (extremely challenging)

AAA Repair

- Variables considered in risk adjustment
 - Patient characteristics
 - Demographics: age, gender, BMI
 - ASA status
 - Comorbidities: renal insufficiency, HTN, HF, diabetes, CAD, liver disease, etc.
 - Labs: hemoglobin, creatinine
 - Surgical characteristics
 - Procedure type (anesthesia CPT code)
 - Emergent / elective
 - Center characteristics
 - -Teaching vs. private hospital

• Observed/Expected (O/E) Ratio

• Observed/Expected (O/E) Ratio

Tenet #3: Opportunity to Intervene

- Necessary for:
 - Identifying cases for which provider has a plausible means to improve outcome
- Ideally, tied to process of care measures
 - Example: Intraoperative hypotension (process of care) associated with AKI (outcome)
 - Creates ability to refine *provider attribution*, and guide how to improve

Tenet #3: Opportunity to Intervene

• **<u>AKI 01</u>**: Preventing acute kidney injury

– Exclusions

- Pre-existing renal failure
- ASA 5 & 6
- Surgeries with direct kidney injury (e.g. nephrectomy)
- Short, extremely low risk procedures (ECT, pain, obstetric non-operative)

– Process of care measures

- Low MAP prevention
- (Others)? \rightarrow fluids, glycemic control, transfusion

Tenet #4: Healthcare Value

• Necessary for:

- Allocating anesthesiologist attention & resources to solve the right problems

- Benefits of a quality measure:
 - Improves patient care
 - Reduces downstream costs associated with complications
- Costs of a quality measure:
 - Distracts providers from other *unmeasured* important care processes
 - Produces upstream implementation costs

Tenet #4: Healthcare Value

- <u>Maximizing Anesthesiologist Value</u>
 - Outcomes with *high healthcare value* tend to:
 - Be more distant from intraoperative period
 - Be less directly associated with intraoperative anesthesiology care
 - Outcomes with *high anesthesiology provider attribution* tend to:
 - Be more proximal to the intraoperative period
 - Be less directly associated with long-lasting healthcare value
 - Anesthesiologist Value = (Overall healthcare value) x (Anesthesiology attribution)

Tenet #4: Healthcare Value

• <u>Outcome time horizon</u> – provider attribution / healthcare value tradeoff

Moving Forward

• Upcoming outcomes sources

- Surgical registries: NSQIP, MSQC, STS
- PACU/ICU data
- Cost data (MVC)
- Patient reported outcomes

• Transparent & enhanced risk adjustment

- O/E dashboard
- Additional patient & surgical risk factors
- Surgical case type (CPT) prediction
- Linkage of process-of-care \rightarrow outcomes measures

