Developing a Culture of Performance Improvement

James P. Bagian, MD, PE

Director

Center for Healthcare Engineering and Patient Safety

Department of Anesthesiology & Industrial and Operations Engineering

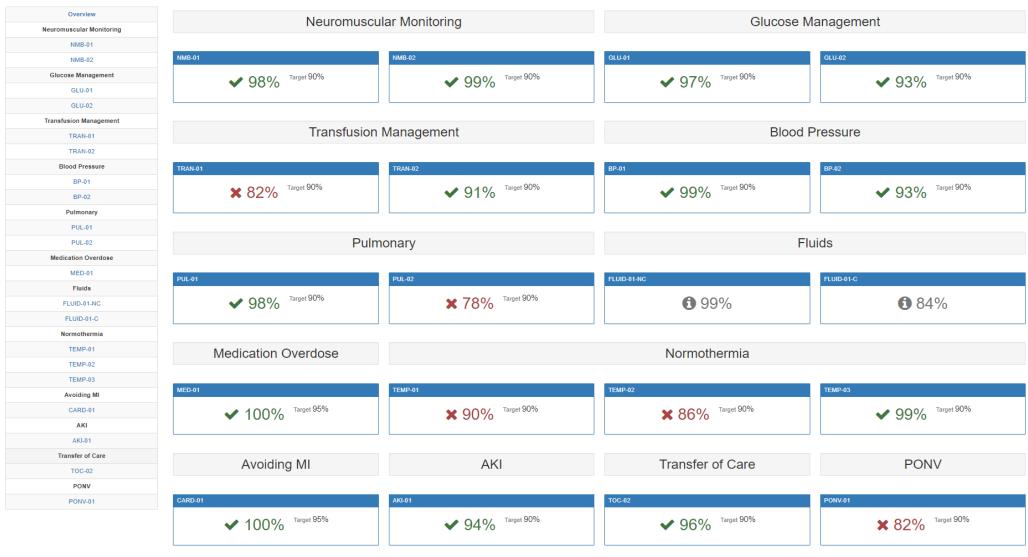
University of Michigan

jbagian@umich.edu

Objectives

- Paramount importance of selecting the appropriate goal
- Understanding underlying causes
- Formulating effective and sustainable intervention
- Critical factors to achieve successful implementation of change

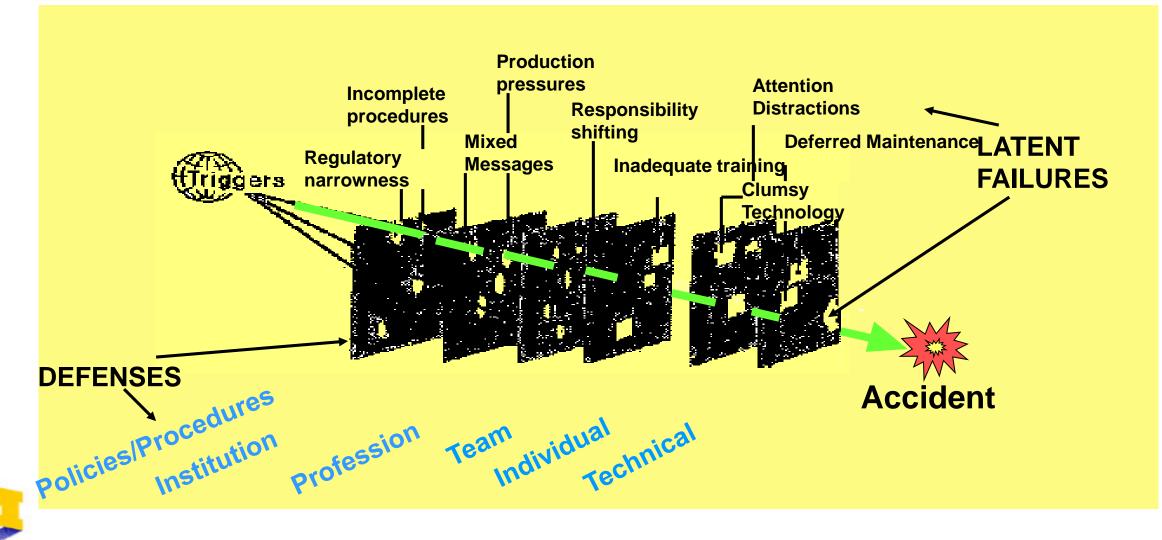
GOAL


No patient will be inadvertently harmed while under our care

Our mission and challenge is to adopt measures and implement programs that improve care

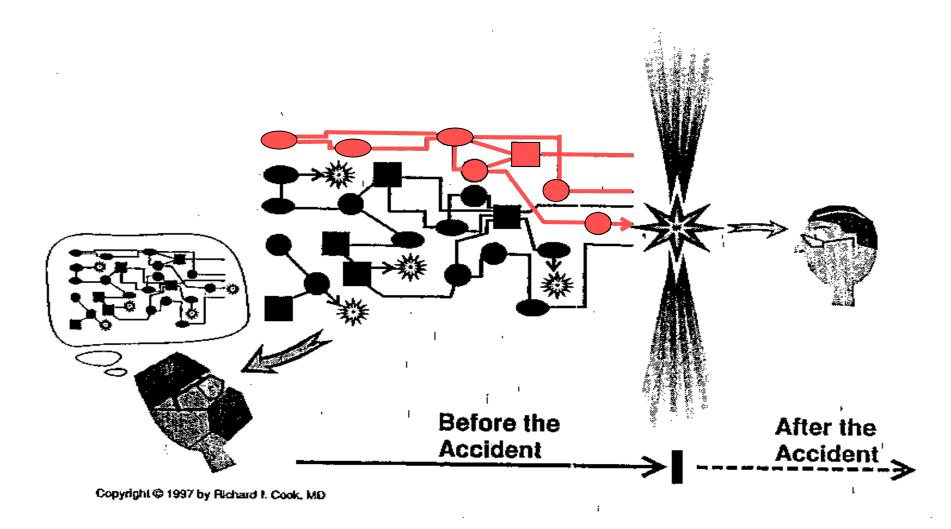
Identify the Problem

Reporting Dashboard


Identifying Root Cause/Contributing Factors

Safety & Human Error: Cornerstones

- People Don't Come to Work to Hurt Someone or Make a Mistake
- Must Keep Asking "Why?"



Safety – Human Error

Safety – Human Error Hindsight Bias

Causation/Actions: Who vs.What &Why

- Who
 - 'Whose Fault Is This?'
 - Actions focused on correcting individual
 - 'Corrects' only after problem occurs
 - Limited scope of action and generalizability
- What & Why
 - Actions focus on systems level causation
 - Widespread applicability
 - Stronger preventive strategy

Systematic (5 Rules of Causation)

- Human Error Must Have Preceding Cause
- ★ Failure to Follow Procedure By Itself Is **NOT** a Root Cause
 - Negative Descriptors Aren't Actionable
 - Failure To Act Is Not A Cause Without Pre-existing Requirement To Act

Why, Why, Why, Why, Why,

Strength of Actions

Human Factors Engineering and "Actions"

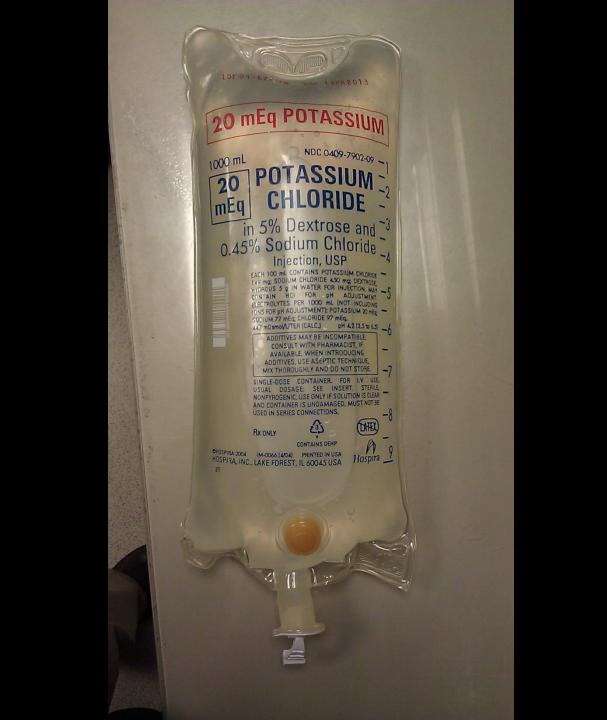
- Warnings and labels (watch out!)
- Training (don't do that)
- Procedure changes (work around that)
- Interlock, lock-in, lock-out, etc (design it so you cannot do that forcing functions)
- Is there one right action???

Action Hierarchy

Less memory or reliance on individual performance

Greater reliance on memory and individual performance

-			
ul	Stronger Actions	Architectural/physical plant changes New devices with usability testing before purchasing Engineering control or interlock (forcing functions) Simplify the process and remove unnecessary steps Standardize on equipment or process Tangible involvement and action by leadership in support of patient safety	
	Intermediate Actions	Redundancy Increase in staffing/decrease in workload Software enhancements/modifications Education using simulation-based learning with a competency assessment completed on a recurring basis Eliminate/reduce distractions (sterile medical environment) Checklist/cognitive aid Eliminate look and sound-alikes Repeat-back/Read-back Enhanced documentation/communication	
	Weaker Actions	Double checks Warnings and labels New procedure/memorandum/policy Traditional training Additional study/analysis	


Examples

Implementation

Getting to Sustainable Improvement

- Problem Identification
- Clear Goal Definition
- Involvement Of All Sectors
- Identify Systems Influences
- Identify Systems Controls
- Identify Constraints
- Critique Go To Worst Critics Early On
- Pilot Volunteers First Then Others
- Evaluate

Cause/Contributing	The lack of a ferromagnetic detection system at the entrance into
Factor (CCF) Statement #1:	the MR magnet room increased the likelihood that the patient's
	oxygen cylinder would be permitted in the room resulting in the
	cylinder being drawn into the bore of the magnet, the magnet being
	quenched, and the MR room being out of service for 5 days.

Action 1	Install a ferromagnetic detection system at the entrance to all four MRI magnet rooms.	
Action Due Date	ion Due Date April 30, 2015	
Date Action Completed Pending		
Responsible Person:	Ms. B, Facility Engineer	

Process/Ou include: wh long it will expected le Date To Be	utcome Measure 1 (Each itcome Measure needs to nat will be measured; how be measured; and the evel of compliance.)	Five ferrous objects including an oxygen cylinder will be passed by the ferromagnetic sensors of each detector and 100% will result in alarms sounding in the adjacent MR Control Room. May 10, 2015 Dr. A. MRI Safety Officer
Responsib	le Person:	Dr. A, MRI Safety Officer
Wa Me	as the Compliance Level et?	To be determined

_	lanagement concurs with this Action and rocess/Outcome Measure		Yes
	If No, why not? (Answered by Management)		
		Is the identification of another action required?	To be determined

Essential Elements For Sustainable Improvement

- Appropriate Goal Identification & Selection
- Transparent Prioritization
- Identification of Real Causes
- System-based Countermeasures That Address Underlying Causes
- Stronger Actions That Are Explicit
- Measurement of Actions
 - Process & Outcome
- Top Leadership Involvement/Visibility

Topics for Discussion

 Process vs Outcome Measures – which is most important?

Value of Pilots and Who Should Participate

Transparency of Performance

Respect for Work – Volunteers vs Real Job

There is no shame in failing while attempting to achieve a worthy goal, the only shame is in not attempting to achieve a worthy goal.